{"title":"卡林:用于同时读取谱系历史和基因表达的小鼠系。","authors":"Sarah Bowling, Fernando D Camargo","doi":"10.1007/978-1-0716-4310-5_14","DOIUrl":null,"url":null,"abstract":"<p><p>The CRISPR-activated repair lineage tracing (CARLIN) mouse line uses DNA barcoding to enable high-resolution tracing of cell lineages in vivo (Bowling et al, Cell 181, 1410-1422.e27, 2020). CARLIN mice contain expressed barcodes that allow simultaneous interrogation of lineage and gene expression information from single cells. Furthermore, barcode editing is fully inducible, resulting in cell lineage labeling that can be performed at any time point in development or adulthood. This chapter details the protocols followed for maintaining CARLIN mice, inducing barcoding, and amplifying the CARLIN barcode from DNA, RNA, and single-cell RNA-sequencing libraries for next-generation sequencing.</p>","PeriodicalId":18490,"journal":{"name":"Methods in molecular biology","volume":"2886 ","pages":"281-298"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CARLIN: A Mouse Line for Simultaneous Readout of Lineage Histories and Gene Expression.\",\"authors\":\"Sarah Bowling, Fernando D Camargo\",\"doi\":\"10.1007/978-1-0716-4310-5_14\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The CRISPR-activated repair lineage tracing (CARLIN) mouse line uses DNA barcoding to enable high-resolution tracing of cell lineages in vivo (Bowling et al, Cell 181, 1410-1422.e27, 2020). CARLIN mice contain expressed barcodes that allow simultaneous interrogation of lineage and gene expression information from single cells. Furthermore, barcode editing is fully inducible, resulting in cell lineage labeling that can be performed at any time point in development or adulthood. This chapter details the protocols followed for maintaining CARLIN mice, inducing barcoding, and amplifying the CARLIN barcode from DNA, RNA, and single-cell RNA-sequencing libraries for next-generation sequencing.</p>\",\"PeriodicalId\":18490,\"journal\":{\"name\":\"Methods in molecular biology\",\"volume\":\"2886 \",\"pages\":\"281-298\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Methods in molecular biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/978-1-0716-4310-5_14\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methods in molecular biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-1-0716-4310-5_14","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
CARLIN: A Mouse Line for Simultaneous Readout of Lineage Histories and Gene Expression.
The CRISPR-activated repair lineage tracing (CARLIN) mouse line uses DNA barcoding to enable high-resolution tracing of cell lineages in vivo (Bowling et al, Cell 181, 1410-1422.e27, 2020). CARLIN mice contain expressed barcodes that allow simultaneous interrogation of lineage and gene expression information from single cells. Furthermore, barcode editing is fully inducible, resulting in cell lineage labeling that can be performed at any time point in development or adulthood. This chapter details the protocols followed for maintaining CARLIN mice, inducing barcoding, and amplifying the CARLIN barcode from DNA, RNA, and single-cell RNA-sequencing libraries for next-generation sequencing.
期刊介绍:
For over 20 years, biological scientists have come to rely on the research protocols and methodologies in the critically acclaimed Methods in Molecular Biology series. The series was the first to introduce the step-by-step protocols approach that has become the standard in all biomedical protocol publishing. Each protocol is provided in readily-reproducible step-by-step fashion, opening with an introductory overview, a list of the materials and reagents needed to complete the experiment, and followed by a detailed procedure that is supported with a helpful notes section offering tips and tricks of the trade as well as troubleshooting advice.