综合多种环境因素,改进总初级生产力估算的混合模型。

IF 1.6 Q2 MULTIDISCIPLINARY SCIENCES
MethodsX Pub Date : 2024-12-09 DOI:10.1016/j.mex.2024.103091
Zhilong Li , Ziti Jiao , Zheyou Tan , Chenxia Wang , Jing Guo , Sizhe Chen , Ge Gao , Fangwen Yang , Xin Dong
{"title":"综合多种环境因素,改进总初级生产力估算的混合模型。","authors":"Zhilong Li ,&nbsp;Ziti Jiao ,&nbsp;Zheyou Tan ,&nbsp;Chenxia Wang ,&nbsp;Jing Guo ,&nbsp;Sizhe Chen ,&nbsp;Ge Gao ,&nbsp;Fangwen Yang ,&nbsp;Xin Dong","doi":"10.1016/j.mex.2024.103091","DOIUrl":null,"url":null,"abstract":"<div><div>Environmental factors lead mainly to the uncertainty of gross primary productivity estimation in most light use efficiency (LUE, ε) models since the simple physical formulas are inadequate to fully express the overall constraint of diverse environmental factors on the maximum ε (ε<sub>max</sub>). In contrast, machine learning has the natural potential to detect intricate patterns and relationships among various environmental variables. Here, we presented a hybrid model (TL-CRF) that utilizes the random forest (RF) technique to incorporate various ecological stress factors into the two-leaf LUE (TL-LUE) model, meanwhile, seasonal differences in the clumping index (CI) on a global scale are considered to adjust seasonal patterns of canopy structure. The comprehensive integration of complex environmental variables based on this RF submodule is conducive to scaling theoretical ε<sub>max</sub> to actual ε as much as possible. The proposed TL-CRF model considerably improves global GPP estimation by complementing innate advantages between the process-based and data-driven models.<ul><li><span>•</span><span><div>The seasonal CI averages in different stages of the leaf life cycle are estimated for different vegetation types on a global scale.</div></span></li><li><span>•</span><span><div>Various environmental stress factors are integrated via the RF technique.</div></span></li><li><span>•</span><span><div>The RF submodule is embedded into the TL-LUE model to establish a hybrid model.</div></span></li></ul></div></div>","PeriodicalId":18446,"journal":{"name":"MethodsX","volume":"14 ","pages":"Article 103091"},"PeriodicalIF":1.6000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11683257/pdf/","citationCount":"0","resultStr":"{\"title\":\"A hybrid model for refining gross primary productivity estimation by integrating multiple environmental factors\",\"authors\":\"Zhilong Li ,&nbsp;Ziti Jiao ,&nbsp;Zheyou Tan ,&nbsp;Chenxia Wang ,&nbsp;Jing Guo ,&nbsp;Sizhe Chen ,&nbsp;Ge Gao ,&nbsp;Fangwen Yang ,&nbsp;Xin Dong\",\"doi\":\"10.1016/j.mex.2024.103091\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Environmental factors lead mainly to the uncertainty of gross primary productivity estimation in most light use efficiency (LUE, ε) models since the simple physical formulas are inadequate to fully express the overall constraint of diverse environmental factors on the maximum ε (ε<sub>max</sub>). In contrast, machine learning has the natural potential to detect intricate patterns and relationships among various environmental variables. Here, we presented a hybrid model (TL-CRF) that utilizes the random forest (RF) technique to incorporate various ecological stress factors into the two-leaf LUE (TL-LUE) model, meanwhile, seasonal differences in the clumping index (CI) on a global scale are considered to adjust seasonal patterns of canopy structure. The comprehensive integration of complex environmental variables based on this RF submodule is conducive to scaling theoretical ε<sub>max</sub> to actual ε as much as possible. The proposed TL-CRF model considerably improves global GPP estimation by complementing innate advantages between the process-based and data-driven models.<ul><li><span>•</span><span><div>The seasonal CI averages in different stages of the leaf life cycle are estimated for different vegetation types on a global scale.</div></span></li><li><span>•</span><span><div>Various environmental stress factors are integrated via the RF technique.</div></span></li><li><span>•</span><span><div>The RF submodule is embedded into the TL-LUE model to establish a hybrid model.</div></span></li></ul></div></div>\",\"PeriodicalId\":18446,\"journal\":{\"name\":\"MethodsX\",\"volume\":\"14 \",\"pages\":\"Article 103091\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-12-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11683257/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"MethodsX\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2215016124005429\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"MethodsX","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2215016124005429","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

在大多数光利用效率(LUE, ε)模型中,环境因素主要导致了总初级生产力估算的不确定性,因为简单的物理公式不足以充分表达各种环境因素对最大ε (εmax)的整体约束。相比之下,机器学习具有检测各种环境变量之间复杂模式和关系的天然潜力。在此基础上,利用随机森林(RF)技术将不同的生态胁迫因子纳入两叶植被有效利用率(TL-LUE)模型,同时考虑全球尺度上丛化指数(CI)的季节差异来调整林冠结构的季节格局。基于该射频子模块的复杂环境变量综合集成,有利于将理论ε最大值尽可能地缩放到实际ε值。提出的TL-CRF模型通过补充基于过程和数据驱动模型之间的固有优势,大大提高了全球GPP估计。•在全球尺度上估算了不同植被类型在叶片生命周期不同阶段的季节CI平均值。•通过射频技术集成各种环境应力因素。•将RF子模块嵌入TL-LUE模型中,建立混合模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A hybrid model for refining gross primary productivity estimation by integrating multiple environmental factors

A hybrid model for refining gross primary productivity estimation by integrating multiple environmental factors
Environmental factors lead mainly to the uncertainty of gross primary productivity estimation in most light use efficiency (LUE, ε) models since the simple physical formulas are inadequate to fully express the overall constraint of diverse environmental factors on the maximum ε (εmax). In contrast, machine learning has the natural potential to detect intricate patterns and relationships among various environmental variables. Here, we presented a hybrid model (TL-CRF) that utilizes the random forest (RF) technique to incorporate various ecological stress factors into the two-leaf LUE (TL-LUE) model, meanwhile, seasonal differences in the clumping index (CI) on a global scale are considered to adjust seasonal patterns of canopy structure. The comprehensive integration of complex environmental variables based on this RF submodule is conducive to scaling theoretical εmax to actual ε as much as possible. The proposed TL-CRF model considerably improves global GPP estimation by complementing innate advantages between the process-based and data-driven models.
  • The seasonal CI averages in different stages of the leaf life cycle are estimated for different vegetation types on a global scale.
  • Various environmental stress factors are integrated via the RF technique.
  • The RF submodule is embedded into the TL-LUE model to establish a hybrid model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
MethodsX
MethodsX Health Professions-Medical Laboratory Technology
CiteScore
3.60
自引率
5.30%
发文量
314
审稿时长
7 weeks
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信