小檗碱的结构修饰及其衍生物的调脂作用

IF 2.6 4区 医学 Q3 CHEMISTRY, MEDICINAL
Yun Lu, Mengxuan Yin, Yuting Lai, Xinyi Ye, Meiling Chen, Yubo Li
{"title":"小檗碱的结构修饰及其衍生物的调脂作用","authors":"Yun Lu,&nbsp;Mengxuan Yin,&nbsp;Yuting Lai,&nbsp;Xinyi Ye,&nbsp;Meiling Chen,&nbsp;Yubo Li","doi":"10.1007/s00044-024-03321-0","DOIUrl":null,"url":null,"abstract":"<div><p>Hyperlipidemia refers to one or more diseases with unbalanced lipid structure in plasma, which is called dyslipidemia in modern medicine. Natural ingredients are an essential source for developing new medications. Berberine (BBR), the tricyclic triterpene quaternary ammonium molecule, is commonly found in the plant world and exhibits significant biological activity in various therapeutic areas, including cancer, inflammation, metabolic disorders, cardiovascular and allergic diseases, and more. Many BBR derivatives have been created and are being developed to address their drawbacks, such as adverse effects due to poor action due to poor water solubility and limited bioavailability. Recently, researchers have modified the many positions that affect cholesterol-lowering activity because of their distinct mechanisms of action, including C-2,3, C-7, C-8, C-9, C-10, C-11, and C-12. This paper reviews the properties of BBR in lipid-lowering, including structural diversity, structural modifications with lipid-lowering effects, synthesis of BBR derivatives, lipid-lowering properties of its derivatives, and corresponding SAR values. These reviews will help to investigate the lipid-lowering effects of BBR and provide guidance for the development of new lipid-lowering drugs. Ultimately, this review is intended to serve as a foundation for future chemical research and assist in the search for potential cholesterol-lowering therapeutics.</p></div>","PeriodicalId":699,"journal":{"name":"Medicinal Chemistry Research","volume":"34 1","pages":"1 - 18"},"PeriodicalIF":2.6000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Structural modifications of berberine and the lipid-regulating effects of its derivatives\",\"authors\":\"Yun Lu,&nbsp;Mengxuan Yin,&nbsp;Yuting Lai,&nbsp;Xinyi Ye,&nbsp;Meiling Chen,&nbsp;Yubo Li\",\"doi\":\"10.1007/s00044-024-03321-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Hyperlipidemia refers to one or more diseases with unbalanced lipid structure in plasma, which is called dyslipidemia in modern medicine. Natural ingredients are an essential source for developing new medications. Berberine (BBR), the tricyclic triterpene quaternary ammonium molecule, is commonly found in the plant world and exhibits significant biological activity in various therapeutic areas, including cancer, inflammation, metabolic disorders, cardiovascular and allergic diseases, and more. Many BBR derivatives have been created and are being developed to address their drawbacks, such as adverse effects due to poor action due to poor water solubility and limited bioavailability. Recently, researchers have modified the many positions that affect cholesterol-lowering activity because of their distinct mechanisms of action, including C-2,3, C-7, C-8, C-9, C-10, C-11, and C-12. This paper reviews the properties of BBR in lipid-lowering, including structural diversity, structural modifications with lipid-lowering effects, synthesis of BBR derivatives, lipid-lowering properties of its derivatives, and corresponding SAR values. These reviews will help to investigate the lipid-lowering effects of BBR and provide guidance for the development of new lipid-lowering drugs. Ultimately, this review is intended to serve as a foundation for future chemical research and assist in the search for potential cholesterol-lowering therapeutics.</p></div>\",\"PeriodicalId\":699,\"journal\":{\"name\":\"Medicinal Chemistry Research\",\"volume\":\"34 1\",\"pages\":\"1 - 18\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Medicinal Chemistry Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00044-024-03321-0\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medicinal Chemistry Research","FirstCategoryId":"3","ListUrlMain":"https://link.springer.com/article/10.1007/s00044-024-03321-0","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

摘要

高脂血症是指血浆中脂质结构不平衡的一种或多种疾病,现代医学称之为血脂异常。天然成分是开发新药的重要来源。小檗碱(Berberine, BBR)是一种三环三萜季铵分子,常见于植物界,在各种治疗领域表现出显著的生物活性,包括癌症、炎症、代谢紊乱、心血管和过敏性疾病等。许多BBR衍生物已经被创造出来并正在开发中,以解决它们的缺点,例如由于水溶性差和生物利用度有限而导致的不良作用。最近,研究人员修改了许多影响降胆固醇活性的位置,因为它们的作用机制不同,包括C-2、3、C-7、C-8、C-9、C-10、C-11和C-12。本文综述了BBR的降脂特性,包括结构多样性、具有降脂作用的结构修饰、BBR衍生物的合成、BBR衍生物的降脂性能以及相应的SAR值。这些综述将有助于研究BBR的降脂作用,并为新型降脂药物的开发提供指导。最终,本综述旨在为未来的化学研究奠定基础,并协助寻找潜在的降低胆固醇的治疗方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Structural modifications of berberine and the lipid-regulating effects of its derivatives

Structural modifications of berberine and the lipid-regulating effects of its derivatives

Hyperlipidemia refers to one or more diseases with unbalanced lipid structure in plasma, which is called dyslipidemia in modern medicine. Natural ingredients are an essential source for developing new medications. Berberine (BBR), the tricyclic triterpene quaternary ammonium molecule, is commonly found in the plant world and exhibits significant biological activity in various therapeutic areas, including cancer, inflammation, metabolic disorders, cardiovascular and allergic diseases, and more. Many BBR derivatives have been created and are being developed to address their drawbacks, such as adverse effects due to poor action due to poor water solubility and limited bioavailability. Recently, researchers have modified the many positions that affect cholesterol-lowering activity because of their distinct mechanisms of action, including C-2,3, C-7, C-8, C-9, C-10, C-11, and C-12. This paper reviews the properties of BBR in lipid-lowering, including structural diversity, structural modifications with lipid-lowering effects, synthesis of BBR derivatives, lipid-lowering properties of its derivatives, and corresponding SAR values. These reviews will help to investigate the lipid-lowering effects of BBR and provide guidance for the development of new lipid-lowering drugs. Ultimately, this review is intended to serve as a foundation for future chemical research and assist in the search for potential cholesterol-lowering therapeutics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Medicinal Chemistry Research
Medicinal Chemistry Research 医学-医药化学
CiteScore
4.70
自引率
3.80%
发文量
162
审稿时长
5.0 months
期刊介绍: Medicinal Chemistry Research (MCRE) publishes papers on a wide range of topics, favoring research with significant, new, and up-to-date information. Although the journal has a demanding peer review process, MCRE still boasts rapid publication, due in part, to the length of the submissions. The journal publishes significant research on various topics, many of which emphasize the structure-activity relationships of molecular biology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信