深层上地幔氧化还原控制条件下橄榄石的水溶性:压力、温度和共存流体的影响及其意义

IF 3.5 2区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS
Kai Zhang, Li Li, Charles R. Stern, Xiaozhi Yang
{"title":"深层上地幔氧化还原控制条件下橄榄石的水溶性:压力、温度和共存流体的影响及其意义","authors":"Kai Zhang,&nbsp;Li Li,&nbsp;Charles R. Stern,&nbsp;Xiaozhi Yang","doi":"10.1007/s00410-024-02197-y","DOIUrl":null,"url":null,"abstract":"<div><p>Water as structural hydroxyl in olivine plays an important role in determining the water budget of the upper mantle and its numerous physicochemical properties. However, the solubility of water in olivine in the deep upper mantle (i.e., 300–410 km depth), which defines the maximum water content under given conditions, still needs to be known with high precision. We examined the water solubility by annealing experiments under conditions controlled by Fe-FeO buffer and peridotite assemblages at 10–13 GPa and 1100–1450 ºC, using a starting olivine of representative chemistry and different fluid materials. The experimental conditions were broadly consistent with those prevailing in the deep upper mantle. The attainment of equilibrium water incorporation in the H-annealed olivine samples was ensured by H diffusion kinetics, water profile analyses and time-series studies. The annealed samples demonstrate infrared hydroxyl bands at 3650–3000 cm<sup>−1</sup>, but the relative band patterns are different from those observed in the available H-annealing experiments at 1–7 GPa under otherwise comparable conditions (including starting materials). The obtained solubility of water increases with increasing both temperature and pressure over the run conditions, and differs apparently between the runs equilibrated by different fluids that are relevant to the deep upper mantle and water solubility studies. In general, the water solubility of olivine increases nonlinearly with increasing depth in the upper mantle, and can be described as: <i>C</i><sub>w</sub> = (290 ± 78) × exp ((0.0043 ± 0.0006) × depth (km))– (268 ± 89) (H<sub>2</sub>O as coexisting fluid) and <i>C</i><sub>w</sub> = (149 ± 72) × exp ((0.0046 ± 0.0011) × depth (km))–(132 ± 85) (CH<sub>4</sub>-H<sub>2</sub>O as coexisting fluid), where <i>C</i><sub>w</sub> is water solubility (ppm wt. H<sub>2</sub>O). The water solubility of olivine in the realistic upper mantle should be defined from the runs coexisting with CH<sub>4</sub>-H<sub>2</sub>O, and the highest value is only ~ 800 ± 80 ppm wt. H<sub>2</sub>O, implying that the actual water contents of olivine in the upper mantle must be mostly (if not exclusively) lower. The inferred storage capacity of water in peridotite in the upper mantle reaches its maximum of 600 ± 100 ppm wt. H<sub>2</sub>O (95% confidence level) at the bottom boundary of ~ 410 km depth, and a minimum of 350 ± 50 ppm wt. H<sub>2</sub>O (95% confidence level) is expected at mid-depths of 190–230 km. During the upwelling of relatively water-rich materials from the source regions of enriched mid-ocean ridge basalts or ocean island basalts, hydrous melting would be much easier to trigger at the mid-depths of the upper mantle. The data further suggest that, to produce a pervasive hydrous melting at the ~ 410 km depth, the prevailing water content of the mantle transition zone should be greater than ~ 600 ppm wt. H<sub>2</sub>O.</p></div>","PeriodicalId":526,"journal":{"name":"Contributions to Mineralogy and Petrology","volume":"180 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Water solubility of olivine under redox-controlled deep upper mantle conditions: effects of pressure, temperature and coexisting fluids and implications\",\"authors\":\"Kai Zhang,&nbsp;Li Li,&nbsp;Charles R. Stern,&nbsp;Xiaozhi Yang\",\"doi\":\"10.1007/s00410-024-02197-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Water as structural hydroxyl in olivine plays an important role in determining the water budget of the upper mantle and its numerous physicochemical properties. However, the solubility of water in olivine in the deep upper mantle (i.e., 300–410 km depth), which defines the maximum water content under given conditions, still needs to be known with high precision. We examined the water solubility by annealing experiments under conditions controlled by Fe-FeO buffer and peridotite assemblages at 10–13 GPa and 1100–1450 ºC, using a starting olivine of representative chemistry and different fluid materials. The experimental conditions were broadly consistent with those prevailing in the deep upper mantle. The attainment of equilibrium water incorporation in the H-annealed olivine samples was ensured by H diffusion kinetics, water profile analyses and time-series studies. The annealed samples demonstrate infrared hydroxyl bands at 3650–3000 cm<sup>−1</sup>, but the relative band patterns are different from those observed in the available H-annealing experiments at 1–7 GPa under otherwise comparable conditions (including starting materials). The obtained solubility of water increases with increasing both temperature and pressure over the run conditions, and differs apparently between the runs equilibrated by different fluids that are relevant to the deep upper mantle and water solubility studies. In general, the water solubility of olivine increases nonlinearly with increasing depth in the upper mantle, and can be described as: <i>C</i><sub>w</sub> = (290 ± 78) × exp ((0.0043 ± 0.0006) × depth (km))– (268 ± 89) (H<sub>2</sub>O as coexisting fluid) and <i>C</i><sub>w</sub> = (149 ± 72) × exp ((0.0046 ± 0.0011) × depth (km))–(132 ± 85) (CH<sub>4</sub>-H<sub>2</sub>O as coexisting fluid), where <i>C</i><sub>w</sub> is water solubility (ppm wt. H<sub>2</sub>O). The water solubility of olivine in the realistic upper mantle should be defined from the runs coexisting with CH<sub>4</sub>-H<sub>2</sub>O, and the highest value is only ~ 800 ± 80 ppm wt. H<sub>2</sub>O, implying that the actual water contents of olivine in the upper mantle must be mostly (if not exclusively) lower. The inferred storage capacity of water in peridotite in the upper mantle reaches its maximum of 600 ± 100 ppm wt. H<sub>2</sub>O (95% confidence level) at the bottom boundary of ~ 410 km depth, and a minimum of 350 ± 50 ppm wt. H<sub>2</sub>O (95% confidence level) is expected at mid-depths of 190–230 km. During the upwelling of relatively water-rich materials from the source regions of enriched mid-ocean ridge basalts or ocean island basalts, hydrous melting would be much easier to trigger at the mid-depths of the upper mantle. The data further suggest that, to produce a pervasive hydrous melting at the ~ 410 km depth, the prevailing water content of the mantle transition zone should be greater than ~ 600 ppm wt. H<sub>2</sub>O.</p></div>\",\"PeriodicalId\":526,\"journal\":{\"name\":\"Contributions to Mineralogy and Petrology\",\"volume\":\"180 1\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-01-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Contributions to Mineralogy and Petrology\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00410-024-02197-y\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Contributions to Mineralogy and Petrology","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1007/s00410-024-02197-y","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

水作为橄榄石中的结构性羟基,在决定上地幔的水收支及其众多物理化学性质方面起着重要作用。但上地幔深部(300-410 km深度)橄榄石中水的溶解度,确定了给定条件下橄榄石的最大含水量,仍需要高精度地了解。在Fe-FeO缓冲液和橄榄岩组合控制的10-13 GPa、1100-1450℃条件下,采用具有代表性化学性质的起始橄榄石和不同的流体材料,通过退火实验考察了其水溶性。实验条件与上地幔深部普遍存在的条件基本一致。通过H扩散动力学、水剖面分析和时间序列研究,确保了H退火橄榄石样品中水的平衡掺入。退火后的样品在3650-3000 cm−1处显示出红外羟基带,但相对能带模式与在1 - 7 GPa条件下(包括起始材料)的现有h -退火实验中观察到的不同。在运行条件下,水的溶解度随着温度和压力的增加而增加,并且在与深部上地幔和水溶性研究相关的不同流体平衡的运行之间存在明显差异。总的来说,橄榄石的水溶性随上地幔深度的增加呈非线性增加,可以描述为:Cw =(290±78)× exp((0.0043±0.0006)×深度(km) -(268±89)(H2O为共存流体)和Cw =(149±72)× exp((0.0046±0.0011)×深度(km)) -(132±85)(CH4-H2O为共存流体),其中Cw为水溶性(ppm wt. H2O)。橄榄石在实际上地幔中的水溶性应由与CH4-H2O共存的溶解度来定义,最高值仅为~ 800±80 ppm wt. H2O,这意味着橄榄石在实际上地幔中的含水量一定大部分(如果不是全部)较低。推断上地幔橄榄岩储水量在~ 410 km深度的底界最大可达600±100 ppm wt. H2O(95%置信度),在190 ~ 230 km的中深度最小可达350±50 ppm wt. H2O(95%置信度)。当相对富水的物质从富集的洋中脊玄武岩或洋岛玄武岩源区上涌时,在上地幔中深部更容易触发含水熔融。这些数据进一步表明,要在~ 410 km深度产生普遍的含水熔融,地幔过渡带的主要含水量应大于~ 600 ppm wt. H2O。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Water solubility of olivine under redox-controlled deep upper mantle conditions: effects of pressure, temperature and coexisting fluids and implications

Water as structural hydroxyl in olivine plays an important role in determining the water budget of the upper mantle and its numerous physicochemical properties. However, the solubility of water in olivine in the deep upper mantle (i.e., 300–410 km depth), which defines the maximum water content under given conditions, still needs to be known with high precision. We examined the water solubility by annealing experiments under conditions controlled by Fe-FeO buffer and peridotite assemblages at 10–13 GPa and 1100–1450 ºC, using a starting olivine of representative chemistry and different fluid materials. The experimental conditions were broadly consistent with those prevailing in the deep upper mantle. The attainment of equilibrium water incorporation in the H-annealed olivine samples was ensured by H diffusion kinetics, water profile analyses and time-series studies. The annealed samples demonstrate infrared hydroxyl bands at 3650–3000 cm−1, but the relative band patterns are different from those observed in the available H-annealing experiments at 1–7 GPa under otherwise comparable conditions (including starting materials). The obtained solubility of water increases with increasing both temperature and pressure over the run conditions, and differs apparently between the runs equilibrated by different fluids that are relevant to the deep upper mantle and water solubility studies. In general, the water solubility of olivine increases nonlinearly with increasing depth in the upper mantle, and can be described as: Cw = (290 ± 78) × exp ((0.0043 ± 0.0006) × depth (km))– (268 ± 89) (H2O as coexisting fluid) and Cw = (149 ± 72) × exp ((0.0046 ± 0.0011) × depth (km))–(132 ± 85) (CH4-H2O as coexisting fluid), where Cw is water solubility (ppm wt. H2O). The water solubility of olivine in the realistic upper mantle should be defined from the runs coexisting with CH4-H2O, and the highest value is only ~ 800 ± 80 ppm wt. H2O, implying that the actual water contents of olivine in the upper mantle must be mostly (if not exclusively) lower. The inferred storage capacity of water in peridotite in the upper mantle reaches its maximum of 600 ± 100 ppm wt. H2O (95% confidence level) at the bottom boundary of ~ 410 km depth, and a minimum of 350 ± 50 ppm wt. H2O (95% confidence level) is expected at mid-depths of 190–230 km. During the upwelling of relatively water-rich materials from the source regions of enriched mid-ocean ridge basalts or ocean island basalts, hydrous melting would be much easier to trigger at the mid-depths of the upper mantle. The data further suggest that, to produce a pervasive hydrous melting at the ~ 410 km depth, the prevailing water content of the mantle transition zone should be greater than ~ 600 ppm wt. H2O.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Contributions to Mineralogy and Petrology
Contributions to Mineralogy and Petrology 地学-地球化学与地球物理
CiteScore
6.50
自引率
5.70%
发文量
94
审稿时长
1.7 months
期刊介绍: Contributions to Mineralogy and Petrology is an international journal that accepts high quality research papers in the fields of igneous and metamorphic petrology, geochemistry and mineralogy. Topics of interest include: major element, trace element and isotope geochemistry, geochronology, experimental petrology, igneous and metamorphic petrology, mineralogy, major and trace element mineral chemistry and thermodynamic modeling of petrologic and geochemical processes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信