半导体材料中磁光热弹性波随电导率变化的随机过程

IF 1.8 3区 工程技术 Q2 ENGINEERING, MULTIDISCIPLINARY
Khaled Lotfy, Saurav Sharma, Borhen Halouani, Abdelaala Ahmed, Alaa A. El-Bary, Ramdan S. Tantawi, Eslam S. Elidy
{"title":"半导体材料中磁光热弹性波随电导率变化的随机过程","authors":"Khaled Lotfy,&nbsp;Saurav Sharma,&nbsp;Borhen Halouani,&nbsp;Abdelaala Ahmed,&nbsp;Alaa A. El-Bary,&nbsp;Ramdan S. Tantawi,&nbsp;Eslam S. Elidy","doi":"10.1007/s10659-024-10104-6","DOIUrl":null,"url":null,"abstract":"<div><p>The primary objective of this study is to investigate the stochastic plasma-mechanical-elastic wave propagation at the boundary of an elastic half-space in a semiconductor material using photo-thermoelasticity theory. The novelty of this work lies in the combination of stochastic simulation with temperature-dependent electrical conductivity and variable thermal conductivity, applied to a two-dimensional (2D) electromagnetic problem based on the electron-hole interaction model. Unlike previous studies, this work incorporates white noise as the randomness factor, providing a more realistic representation of random processes in semiconductor materials. The normal mode analysis technique is used to derive both deterministic and stochastic wave behaviors, focusing on short-time dynamics. The results, which are numerically analyzed and graphically represented, provide new insights into the differential behavior of stochastic versus deterministic distributions in magneto-photo-thermoelastic wave propagation, contributing to a more comprehensive understanding of semiconductor behavior under random influences.</p></div>","PeriodicalId":624,"journal":{"name":"Journal of Elasticity","volume":"157 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stochastic Process of Magneto-Photo-Thermoelastic Waves in Semiconductor Materials with the Change in Electrical Conductivity\",\"authors\":\"Khaled Lotfy,&nbsp;Saurav Sharma,&nbsp;Borhen Halouani,&nbsp;Abdelaala Ahmed,&nbsp;Alaa A. El-Bary,&nbsp;Ramdan S. Tantawi,&nbsp;Eslam S. Elidy\",\"doi\":\"10.1007/s10659-024-10104-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The primary objective of this study is to investigate the stochastic plasma-mechanical-elastic wave propagation at the boundary of an elastic half-space in a semiconductor material using photo-thermoelasticity theory. The novelty of this work lies in the combination of stochastic simulation with temperature-dependent electrical conductivity and variable thermal conductivity, applied to a two-dimensional (2D) electromagnetic problem based on the electron-hole interaction model. Unlike previous studies, this work incorporates white noise as the randomness factor, providing a more realistic representation of random processes in semiconductor materials. The normal mode analysis technique is used to derive both deterministic and stochastic wave behaviors, focusing on short-time dynamics. The results, which are numerically analyzed and graphically represented, provide new insights into the differential behavior of stochastic versus deterministic distributions in magneto-photo-thermoelastic wave propagation, contributing to a more comprehensive understanding of semiconductor behavior under random influences.</p></div>\",\"PeriodicalId\":624,\"journal\":{\"name\":\"Journal of Elasticity\",\"volume\":\"157 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2025-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Elasticity\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10659-024-10104-6\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Elasticity","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10659-024-10104-6","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本研究的主要目的是利用光热弹性理论研究半导体材料中弹性半空间边界的随机等离子体-机械-弹性波传播。这项工作的新颖之处在于将随机模拟与温度相关的电导率和可变导热率相结合,应用于基于电子-空穴相互作用模型的二维(2D)电磁问题。与以前的研究不同,这项工作将白噪声作为随机因素,为半导体材料中的随机过程提供了更真实的表示。采用正态分析技术推导了确定性和随机波动行为,重点是短时动力学。对结果进行了数值分析和图形表示,为磁光热弹性波传播中随机分布与确定性分布的差异行为提供了新的见解,有助于更全面地理解随机影响下的半导体行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stochastic Process of Magneto-Photo-Thermoelastic Waves in Semiconductor Materials with the Change in Electrical Conductivity

The primary objective of this study is to investigate the stochastic plasma-mechanical-elastic wave propagation at the boundary of an elastic half-space in a semiconductor material using photo-thermoelasticity theory. The novelty of this work lies in the combination of stochastic simulation with temperature-dependent electrical conductivity and variable thermal conductivity, applied to a two-dimensional (2D) electromagnetic problem based on the electron-hole interaction model. Unlike previous studies, this work incorporates white noise as the randomness factor, providing a more realistic representation of random processes in semiconductor materials. The normal mode analysis technique is used to derive both deterministic and stochastic wave behaviors, focusing on short-time dynamics. The results, which are numerically analyzed and graphically represented, provide new insights into the differential behavior of stochastic versus deterministic distributions in magneto-photo-thermoelastic wave propagation, contributing to a more comprehensive understanding of semiconductor behavior under random influences.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Elasticity
Journal of Elasticity 工程技术-材料科学:综合
CiteScore
3.70
自引率
15.00%
发文量
74
审稿时长
>12 weeks
期刊介绍: The Journal of Elasticity was founded in 1971 by Marvin Stippes (1922-1979), with its main purpose being to report original and significant discoveries in elasticity. The Journal has broadened in scope over the years to include original contributions in the physical and mathematical science of solids. The areas of rational mechanics, mechanics of materials, including theories of soft materials, biomechanics, and engineering sciences that contribute to fundamental advancements in understanding and predicting the complex behavior of solids are particularly welcomed. The role of elasticity in all such behavior is well recognized and reporting significant discoveries in elasticity remains important to the Journal, as is its relation to thermal and mass transport, electromagnetism, and chemical reactions. Fundamental research that applies the concepts of physics and elements of applied mathematical science is of particular interest. Original research contributions will appear as either full research papers or research notes. Well-documented historical essays and reviews also are welcomed. Materials that will prove effective in teaching will appear as classroom notes. Computational and/or experimental investigations that emphasize relationships to the modeling of the novel physical behavior of solids at all scales are of interest. Guidance principles for content are to be found in the current interests of the Editorial Board.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信