Diego Domínguez-Carretero , Xavier Llovet , Núria Pujol-Solà , Cristina Villanova-de-Benavent , Joaquín A. Proenza
{"title":"铬尖晶石中关键成岩微量元素的精确电子探针微量分析","authors":"Diego Domínguez-Carretero , Xavier Llovet , Núria Pujol-Solà , Cristina Villanova-de-Benavent , Joaquín A. Proenza","doi":"10.1016/j.chemgeo.2024.122579","DOIUrl":null,"url":null,"abstract":"<div><div>The trace element composition of Cr-spinel is paramount for interpreting the petrogenesis of a large group of mafic to ultramafic rocks. Although laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) has proven to be very useful for the determination of trace element abundances of Cr-spinel, the characterization of Cr-spinel grains that are inhomogeneous over micrometer length scales requires the use of techniques that provide a better spatial resolution than LA-ICP-MS. In this work, we develop a protocol for the determination of trace and minor elements in Cr-spinel by electron probe microanalysis (EPMA) using the software provided by the manufacturer. The optimized analytical conditions (25 kV accelerating voltage, 900 nA beam current, 60–480 s peak counting times, aggregate spectrometer data) allowed us to achieve detection limits (3<span><math><mi>σ</mi></math></span>) in the range 4–26 ppm with relative analytical precisions (2<span><math><mi>σ</mi></math></span>) in the range 1–3 % for all analyzed elements (Ti, V, Mn, Co, Ni, and Zn), except for Sc and Ga, for which the precision was much lower (36–46 %). The developed methodology was applied to the analysis of Cr-spinel grains from the Mayarí-Baracoa Ophiolitic Belt (eastern Cuba), in correspondence with previous LA-ICP-MS analyses, which were used to assess the reliability of the EPMA results. The root mean square percentage deviation (<em>RMS</em>) between the EPMA and LA-ICP-MS data was in the range 4.7–22.5 % for Ti, V, Mn, Co, Ni, and Zn, while for Ga the <em>RMS</em> value was 32.5 %. For Sc, the <em>RMS</em> value was much higher (171 %), despite the low detection limit achieved (4 ppm) for this element. Our results indicate that the trace element composition of primary Cr-spinel obtained by EPMA can be readily used, except for Sc, to constrain petrogenetic information on chromitites in a reliable way.</div></div>","PeriodicalId":9847,"journal":{"name":"Chemical Geology","volume":"674 ","pages":"Article 122579"},"PeriodicalIF":3.6000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Accurate electron probe microanalysis of key petrogenetic minor and trace elements in Cr-spinel\",\"authors\":\"Diego Domínguez-Carretero , Xavier Llovet , Núria Pujol-Solà , Cristina Villanova-de-Benavent , Joaquín A. Proenza\",\"doi\":\"10.1016/j.chemgeo.2024.122579\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The trace element composition of Cr-spinel is paramount for interpreting the petrogenesis of a large group of mafic to ultramafic rocks. Although laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) has proven to be very useful for the determination of trace element abundances of Cr-spinel, the characterization of Cr-spinel grains that are inhomogeneous over micrometer length scales requires the use of techniques that provide a better spatial resolution than LA-ICP-MS. In this work, we develop a protocol for the determination of trace and minor elements in Cr-spinel by electron probe microanalysis (EPMA) using the software provided by the manufacturer. The optimized analytical conditions (25 kV accelerating voltage, 900 nA beam current, 60–480 s peak counting times, aggregate spectrometer data) allowed us to achieve detection limits (3<span><math><mi>σ</mi></math></span>) in the range 4–26 ppm with relative analytical precisions (2<span><math><mi>σ</mi></math></span>) in the range 1–3 % for all analyzed elements (Ti, V, Mn, Co, Ni, and Zn), except for Sc and Ga, for which the precision was much lower (36–46 %). The developed methodology was applied to the analysis of Cr-spinel grains from the Mayarí-Baracoa Ophiolitic Belt (eastern Cuba), in correspondence with previous LA-ICP-MS analyses, which were used to assess the reliability of the EPMA results. The root mean square percentage deviation (<em>RMS</em>) between the EPMA and LA-ICP-MS data was in the range 4.7–22.5 % for Ti, V, Mn, Co, Ni, and Zn, while for Ga the <em>RMS</em> value was 32.5 %. For Sc, the <em>RMS</em> value was much higher (171 %), despite the low detection limit achieved (4 ppm) for this element. Our results indicate that the trace element composition of primary Cr-spinel obtained by EPMA can be readily used, except for Sc, to constrain petrogenetic information on chromitites in a reliable way.</div></div>\",\"PeriodicalId\":9847,\"journal\":{\"name\":\"Chemical Geology\",\"volume\":\"674 \",\"pages\":\"Article 122579\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Geology\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0009254124006594\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Geology","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0009254124006594","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
Accurate electron probe microanalysis of key petrogenetic minor and trace elements in Cr-spinel
The trace element composition of Cr-spinel is paramount for interpreting the petrogenesis of a large group of mafic to ultramafic rocks. Although laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) has proven to be very useful for the determination of trace element abundances of Cr-spinel, the characterization of Cr-spinel grains that are inhomogeneous over micrometer length scales requires the use of techniques that provide a better spatial resolution than LA-ICP-MS. In this work, we develop a protocol for the determination of trace and minor elements in Cr-spinel by electron probe microanalysis (EPMA) using the software provided by the manufacturer. The optimized analytical conditions (25 kV accelerating voltage, 900 nA beam current, 60–480 s peak counting times, aggregate spectrometer data) allowed us to achieve detection limits (3) in the range 4–26 ppm with relative analytical precisions (2) in the range 1–3 % for all analyzed elements (Ti, V, Mn, Co, Ni, and Zn), except for Sc and Ga, for which the precision was much lower (36–46 %). The developed methodology was applied to the analysis of Cr-spinel grains from the Mayarí-Baracoa Ophiolitic Belt (eastern Cuba), in correspondence with previous LA-ICP-MS analyses, which were used to assess the reliability of the EPMA results. The root mean square percentage deviation (RMS) between the EPMA and LA-ICP-MS data was in the range 4.7–22.5 % for Ti, V, Mn, Co, Ni, and Zn, while for Ga the RMS value was 32.5 %. For Sc, the RMS value was much higher (171 %), despite the low detection limit achieved (4 ppm) for this element. Our results indicate that the trace element composition of primary Cr-spinel obtained by EPMA can be readily used, except for Sc, to constrain petrogenetic information on chromitites in a reliable way.
期刊介绍:
Chemical Geology is an international journal that publishes original research papers on isotopic and elemental geochemistry, geochronology and cosmochemistry.
The Journal focuses on chemical processes in igneous, metamorphic, and sedimentary petrology, low- and high-temperature aqueous solutions, biogeochemistry, the environment and cosmochemistry.
Papers that are field, experimentally, or computationally based are appropriate if they are of broad international interest. The Journal generally does not publish papers that are primarily of regional or local interest, or which are primarily focused on remediation and applied geochemistry.
The Journal also welcomes innovative papers dealing with significant analytical advances that are of wide interest in the community and extend significantly beyond the scope of what would be included in the methods section of a standard research paper.