{"title":"概率空间与广义维数:多重分形方法","authors":"Lixin Guo, Bilel Selmi, Zhiming Li, Haythem Zyoudi","doi":"10.1016/j.chaos.2024.115953","DOIUrl":null,"url":null,"abstract":"Consider a probability space <mml:math altimg=\"si1.svg\" display=\"inline\"><mml:mrow><mml:mo>(</mml:mo><mml:mi>Z</mml:mi><mml:mo>,</mml:mo><mml:mi>ℱ</mml:mi><mml:mo>,</mml:mo><mml:mi>τ</mml:mi><mml:mo>)</mml:mo></mml:mrow></mml:math>. This paper primarily investigates a general multifractal formalism within the probability space <mml:math altimg=\"si1.svg\" display=\"inline\"><mml:mrow><mml:mo>(</mml:mo><mml:mi>Z</mml:mi><mml:mo>,</mml:mo><mml:mi>ℱ</mml:mi><mml:mo>,</mml:mo><mml:mi>τ</mml:mi><mml:mo>)</mml:mo></mml:mrow></mml:math>. Our first objective is to introduce a multifractal generalization of the Hausdorff and packing measures. We then explore the properties of the general multifractal Hausdorff measure and the multifractal packing measure within <mml:math altimg=\"si1.svg\" display=\"inline\"><mml:mrow><mml:mo>(</mml:mo><mml:mi>Z</mml:mi><mml:mo>,</mml:mo><mml:mi>ℱ</mml:mi><mml:mo>,</mml:mo><mml:mi>τ</mml:mi><mml:mo>)</mml:mo></mml:mrow></mml:math>, examining their implications for the general multifractal spectrum functions. We investigate the relationship between the general multifractal measures and the nature of general multifractal dimensions within this framework. Additionally, we obtain an analogue of Frostman’s lemma for the general multifractal Hausdorff and packing measures in probability spaces. Using this analogue, we derive representations for the functions <mml:math altimg=\"si4.svg\" display=\"inline\"><mml:msubsup><mml:mrow><mml:mi>b</mml:mi></mml:mrow><mml:mrow><mml:mi>ℋ</mml:mi></mml:mrow><mml:mrow><mml:mover accent=\"true\"><mml:mrow><mml:mi>π</mml:mi></mml:mrow><mml:mrow><mml:mo>̃</mml:mo></mml:mrow></mml:mover></mml:mrow></mml:msubsup></mml:math> and <mml:math altimg=\"si5.svg\" display=\"inline\"><mml:msubsup><mml:mrow><mml:mi>b</mml:mi></mml:mrow><mml:mrow><mml:mi mathvariant=\"script\">P</mml:mi></mml:mrow><mml:mrow><mml:mover accent=\"true\"><mml:mrow><mml:mi>π</mml:mi></mml:mrow><mml:mrow><mml:mo>̃</mml:mo></mml:mrow></mml:mover></mml:mrow></mml:msubsup></mml:math>. Furthermore, we provide a technique to demonstrate that <mml:math altimg=\"si6.svg\" display=\"inline\"><mml:mi mathvariant=\"normal\">E</mml:mi></mml:math> is an <mml:math altimg=\"si7.svg\" display=\"inline\"><mml:mrow><mml:mo>(</mml:mo><mml:mi>α</mml:mi><mml:mo>,</mml:mo><mml:mi>π</mml:mi><mml:mo>)</mml:mo></mml:mrow></mml:math>-fractal with respect to <mml:math altimg=\"si8.svg\" display=\"inline\"><mml:mi>τ</mml:mi></mml:math>, leading to density theorems for the multifractal Hausdorff and packing measures in these probability spaces. Finally, we present a general theorem for multifractal formalism on probability spaces, deriving results for general multifractal Hausdorff and packing functions that vary with respect to arbitrary probability measures at points <mml:math altimg=\"si9.svg\" display=\"inline\"><mml:mi>α</mml:mi></mml:math> where the multifractal functions <mml:math altimg=\"si10.svg\" display=\"inline\"><mml:mrow><mml:msubsup><mml:mrow><mml:mi>b</mml:mi></mml:mrow><mml:mrow><mml:mi>ℋ</mml:mi></mml:mrow><mml:mrow><mml:mover accent=\"true\"><mml:mrow><mml:mi>π</mml:mi></mml:mrow><mml:mrow><mml:mo>̃</mml:mo></mml:mrow></mml:mover></mml:mrow></mml:msubsup><mml:mrow><mml:mo>(</mml:mo><mml:mi>α</mml:mi><mml:mo>)</mml:mo></mml:mrow></mml:mrow></mml:math> and <mml:math altimg=\"si11.svg\" display=\"inline\"><mml:mrow><mml:msubsup><mml:mrow><mml:mi>b</mml:mi></mml:mrow><mml:mrow><mml:mi mathvariant=\"script\">P</mml:mi></mml:mrow><mml:mrow><mml:mover accent=\"true\"><mml:mrow><mml:mi>π</mml:mi></mml:mrow><mml:mrow><mml:mo>̃</mml:mo></mml:mrow></mml:mover></mml:mrow></mml:msubsup><mml:mrow><mml:mo>(</mml:mo><mml:mi>α</mml:mi><mml:mo>)</mml:mo></mml:mrow></mml:mrow></mml:math> differ.","PeriodicalId":9764,"journal":{"name":"Chaos Solitons & Fractals","volume":"67 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2024-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Probabilistic spaces and generalized dimensions: A multifractal approach\",\"authors\":\"Lixin Guo, Bilel Selmi, Zhiming Li, Haythem Zyoudi\",\"doi\":\"10.1016/j.chaos.2024.115953\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Consider a probability space <mml:math altimg=\\\"si1.svg\\\" display=\\\"inline\\\"><mml:mrow><mml:mo>(</mml:mo><mml:mi>Z</mml:mi><mml:mo>,</mml:mo><mml:mi>ℱ</mml:mi><mml:mo>,</mml:mo><mml:mi>τ</mml:mi><mml:mo>)</mml:mo></mml:mrow></mml:math>. This paper primarily investigates a general multifractal formalism within the probability space <mml:math altimg=\\\"si1.svg\\\" display=\\\"inline\\\"><mml:mrow><mml:mo>(</mml:mo><mml:mi>Z</mml:mi><mml:mo>,</mml:mo><mml:mi>ℱ</mml:mi><mml:mo>,</mml:mo><mml:mi>τ</mml:mi><mml:mo>)</mml:mo></mml:mrow></mml:math>. Our first objective is to introduce a multifractal generalization of the Hausdorff and packing measures. We then explore the properties of the general multifractal Hausdorff measure and the multifractal packing measure within <mml:math altimg=\\\"si1.svg\\\" display=\\\"inline\\\"><mml:mrow><mml:mo>(</mml:mo><mml:mi>Z</mml:mi><mml:mo>,</mml:mo><mml:mi>ℱ</mml:mi><mml:mo>,</mml:mo><mml:mi>τ</mml:mi><mml:mo>)</mml:mo></mml:mrow></mml:math>, examining their implications for the general multifractal spectrum functions. We investigate the relationship between the general multifractal measures and the nature of general multifractal dimensions within this framework. Additionally, we obtain an analogue of Frostman’s lemma for the general multifractal Hausdorff and packing measures in probability spaces. Using this analogue, we derive representations for the functions <mml:math altimg=\\\"si4.svg\\\" display=\\\"inline\\\"><mml:msubsup><mml:mrow><mml:mi>b</mml:mi></mml:mrow><mml:mrow><mml:mi>ℋ</mml:mi></mml:mrow><mml:mrow><mml:mover accent=\\\"true\\\"><mml:mrow><mml:mi>π</mml:mi></mml:mrow><mml:mrow><mml:mo>̃</mml:mo></mml:mrow></mml:mover></mml:mrow></mml:msubsup></mml:math> and <mml:math altimg=\\\"si5.svg\\\" display=\\\"inline\\\"><mml:msubsup><mml:mrow><mml:mi>b</mml:mi></mml:mrow><mml:mrow><mml:mi mathvariant=\\\"script\\\">P</mml:mi></mml:mrow><mml:mrow><mml:mover accent=\\\"true\\\"><mml:mrow><mml:mi>π</mml:mi></mml:mrow><mml:mrow><mml:mo>̃</mml:mo></mml:mrow></mml:mover></mml:mrow></mml:msubsup></mml:math>. Furthermore, we provide a technique to demonstrate that <mml:math altimg=\\\"si6.svg\\\" display=\\\"inline\\\"><mml:mi mathvariant=\\\"normal\\\">E</mml:mi></mml:math> is an <mml:math altimg=\\\"si7.svg\\\" display=\\\"inline\\\"><mml:mrow><mml:mo>(</mml:mo><mml:mi>α</mml:mi><mml:mo>,</mml:mo><mml:mi>π</mml:mi><mml:mo>)</mml:mo></mml:mrow></mml:math>-fractal with respect to <mml:math altimg=\\\"si8.svg\\\" display=\\\"inline\\\"><mml:mi>τ</mml:mi></mml:math>, leading to density theorems for the multifractal Hausdorff and packing measures in these probability spaces. Finally, we present a general theorem for multifractal formalism on probability spaces, deriving results for general multifractal Hausdorff and packing functions that vary with respect to arbitrary probability measures at points <mml:math altimg=\\\"si9.svg\\\" display=\\\"inline\\\"><mml:mi>α</mml:mi></mml:math> where the multifractal functions <mml:math altimg=\\\"si10.svg\\\" display=\\\"inline\\\"><mml:mrow><mml:msubsup><mml:mrow><mml:mi>b</mml:mi></mml:mrow><mml:mrow><mml:mi>ℋ</mml:mi></mml:mrow><mml:mrow><mml:mover accent=\\\"true\\\"><mml:mrow><mml:mi>π</mml:mi></mml:mrow><mml:mrow><mml:mo>̃</mml:mo></mml:mrow></mml:mover></mml:mrow></mml:msubsup><mml:mrow><mml:mo>(</mml:mo><mml:mi>α</mml:mi><mml:mo>)</mml:mo></mml:mrow></mml:mrow></mml:math> and <mml:math altimg=\\\"si11.svg\\\" display=\\\"inline\\\"><mml:mrow><mml:msubsup><mml:mrow><mml:mi>b</mml:mi></mml:mrow><mml:mrow><mml:mi mathvariant=\\\"script\\\">P</mml:mi></mml:mrow><mml:mrow><mml:mover accent=\\\"true\\\"><mml:mrow><mml:mi>π</mml:mi></mml:mrow><mml:mrow><mml:mo>̃</mml:mo></mml:mrow></mml:mover></mml:mrow></mml:msubsup><mml:mrow><mml:mo>(</mml:mo><mml:mi>α</mml:mi><mml:mo>)</mml:mo></mml:mrow></mml:mrow></mml:math> differ.\",\"PeriodicalId\":9764,\"journal\":{\"name\":\"Chaos Solitons & Fractals\",\"volume\":\"67 1\",\"pages\":\"\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-12-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chaos Solitons & Fractals\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1016/j.chaos.2024.115953\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos Solitons & Fractals","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1016/j.chaos.2024.115953","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
摘要
考虑一个概率空间(Z,,τ)。本文主要研究概率空间(Z,,τ)内的一般多重分形形式。我们的第一个目标是介绍Hausdorff和packing测度的多重分形推广。然后,我们探讨了一般多重分形Hausdorff测度和多重分形包装测度在(Z,,τ)内的性质,研究了它们对一般多重分形谱函数的含义。我们在这个框架内研究了一般多重分形测度与一般多重分形维数性质之间的关系。此外,我们还得到了概率空间中一般多重分形Hausdorff和packing测度的Frostman引理的一个类比。利用这种类比,我们导出了函数b h h π n和bPπ n的表示。此外,我们提供了一种技术来证明E是一个关于τ的(α,π)分形,从而得到了多重分形Hausdorff的密度定理和这些概率空间中的填充测度。最后,我们给出了概率空间上多重分形形式的一个一般定理,得到了在多重分形函数b h π π (α)和bpi π π (α)不同的点α处随任意概率测度变化的一般多重分形Hausdorff函数和packing函数的结果。
Probabilistic spaces and generalized dimensions: A multifractal approach
Consider a probability space (Z,ℱ,τ). This paper primarily investigates a general multifractal formalism within the probability space (Z,ℱ,τ). Our first objective is to introduce a multifractal generalization of the Hausdorff and packing measures. We then explore the properties of the general multifractal Hausdorff measure and the multifractal packing measure within (Z,ℱ,τ), examining their implications for the general multifractal spectrum functions. We investigate the relationship between the general multifractal measures and the nature of general multifractal dimensions within this framework. Additionally, we obtain an analogue of Frostman’s lemma for the general multifractal Hausdorff and packing measures in probability spaces. Using this analogue, we derive representations for the functions bℋπ̃ and bPπ̃. Furthermore, we provide a technique to demonstrate that E is an (α,π)-fractal with respect to τ, leading to density theorems for the multifractal Hausdorff and packing measures in these probability spaces. Finally, we present a general theorem for multifractal formalism on probability spaces, deriving results for general multifractal Hausdorff and packing functions that vary with respect to arbitrary probability measures at points α where the multifractal functions bℋπ̃(α) and bPπ̃(α) differ.
期刊介绍:
Chaos, Solitons & Fractals strives to establish itself as a premier journal in the interdisciplinary realm of Nonlinear Science, Non-equilibrium, and Complex Phenomena. It welcomes submissions covering a broad spectrum of topics within this field, including dynamics, non-equilibrium processes in physics, chemistry, and geophysics, complex matter and networks, mathematical models, computational biology, applications to quantum and mesoscopic phenomena, fluctuations and random processes, self-organization, and social phenomena.