Yuan Zhao, Jia Wang, Xingzhou Zha, Xuedi Sheng, Lei Dong, Xin-Ping Wu, Zhen Liu, Hongliang Jiang, Chunzhong Li
{"title":"助溶剂电解质促进烷基醇电化学半加氢反应","authors":"Yuan Zhao, Jia Wang, Xingzhou Zha, Xuedi Sheng, Lei Dong, Xin-Ping Wu, Zhen Liu, Hongliang Jiang, Chunzhong Li","doi":"10.1021/jacs.4c14773","DOIUrl":null,"url":null,"abstract":"Green electricity-driven alkenol electrosynthesis via electrocatalytic alkynol semihydrogenation represents a sustainable route to conventional thermocatalysis. Both the electrocatalyst and electrolyte strongly impact the semihydrogenation performance. Despite significant progress in developing sophisticated electrocatalysts, a well-designed electrolyte in conjunction with industrial catalysts is an attractive strategy to advance the industrialization process of electrocatalytic alkynol semihydrogenation, but remains unexplored. Here, we develop a dimethyl sulfoxide (DMSO)-H<sub>2</sub>O cosolvent electrolyte for electrocatalytic alkynol semihydrogenation. At an alkynol conversion of about 100%, the DMSO-H<sub>2</sub>O electrolyte compared to the DMSO-free counterpart enables the alkenol selectivity on Cu catalysts to be promoted from 60–70% to over 90% at all measured current densities; meanwhile, the reaction rate is slightly decreased due to the inhibited water dissociation. Mechanistic studies reveal that the strong hydrogen-bond interactions between DMSO and H<sub>2</sub>O suppress the dissociation of interfacial H<sub>2</sub>O, leading to a decreased H* coverage at the electrode surface. The decreased H* coverage hinders the overhydrogenation of alkynols and favors the production of alkenols. Remarkably, the DMSO-induced enhancement of alkenol selectivity is applicable to a set of commercial catalysts and to the semihydrogenation of various alkynols. Eventually, a scaled-up 3 × 100 cm<sup>2</sup> electrolyzer stack is established to achieve an alkynol conversion of ∼96% and an alkenol selectivity of ∼95% in the cosolvent electrolyte. This work not only presents an electrolyte strategy for boosting alkenol electrosynthesis, but also highlights the possibility of sustainable alkenol electro-production.","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":"40 1","pages":""},"PeriodicalIF":14.4000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Cosolvent Electrolyte Boosting Electrochemical Alkynol Semihydrogenation\",\"authors\":\"Yuan Zhao, Jia Wang, Xingzhou Zha, Xuedi Sheng, Lei Dong, Xin-Ping Wu, Zhen Liu, Hongliang Jiang, Chunzhong Li\",\"doi\":\"10.1021/jacs.4c14773\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Green electricity-driven alkenol electrosynthesis via electrocatalytic alkynol semihydrogenation represents a sustainable route to conventional thermocatalysis. Both the electrocatalyst and electrolyte strongly impact the semihydrogenation performance. Despite significant progress in developing sophisticated electrocatalysts, a well-designed electrolyte in conjunction with industrial catalysts is an attractive strategy to advance the industrialization process of electrocatalytic alkynol semihydrogenation, but remains unexplored. Here, we develop a dimethyl sulfoxide (DMSO)-H<sub>2</sub>O cosolvent electrolyte for electrocatalytic alkynol semihydrogenation. At an alkynol conversion of about 100%, the DMSO-H<sub>2</sub>O electrolyte compared to the DMSO-free counterpart enables the alkenol selectivity on Cu catalysts to be promoted from 60–70% to over 90% at all measured current densities; meanwhile, the reaction rate is slightly decreased due to the inhibited water dissociation. Mechanistic studies reveal that the strong hydrogen-bond interactions between DMSO and H<sub>2</sub>O suppress the dissociation of interfacial H<sub>2</sub>O, leading to a decreased H* coverage at the electrode surface. The decreased H* coverage hinders the overhydrogenation of alkynols and favors the production of alkenols. Remarkably, the DMSO-induced enhancement of alkenol selectivity is applicable to a set of commercial catalysts and to the semihydrogenation of various alkynols. Eventually, a scaled-up 3 × 100 cm<sup>2</sup> electrolyzer stack is established to achieve an alkynol conversion of ∼96% and an alkenol selectivity of ∼95% in the cosolvent electrolyte. This work not only presents an electrolyte strategy for boosting alkenol electrosynthesis, but also highlights the possibility of sustainable alkenol electro-production.\",\"PeriodicalId\":49,\"journal\":{\"name\":\"Journal of the American Chemical Society\",\"volume\":\"40 1\",\"pages\":\"\"},\"PeriodicalIF\":14.4000,\"publicationDate\":\"2025-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the American Chemical Society\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/jacs.4c14773\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jacs.4c14773","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
A Cosolvent Electrolyte Boosting Electrochemical Alkynol Semihydrogenation
Green electricity-driven alkenol electrosynthesis via electrocatalytic alkynol semihydrogenation represents a sustainable route to conventional thermocatalysis. Both the electrocatalyst and electrolyte strongly impact the semihydrogenation performance. Despite significant progress in developing sophisticated electrocatalysts, a well-designed electrolyte in conjunction with industrial catalysts is an attractive strategy to advance the industrialization process of electrocatalytic alkynol semihydrogenation, but remains unexplored. Here, we develop a dimethyl sulfoxide (DMSO)-H2O cosolvent electrolyte for electrocatalytic alkynol semihydrogenation. At an alkynol conversion of about 100%, the DMSO-H2O electrolyte compared to the DMSO-free counterpart enables the alkenol selectivity on Cu catalysts to be promoted from 60–70% to over 90% at all measured current densities; meanwhile, the reaction rate is slightly decreased due to the inhibited water dissociation. Mechanistic studies reveal that the strong hydrogen-bond interactions between DMSO and H2O suppress the dissociation of interfacial H2O, leading to a decreased H* coverage at the electrode surface. The decreased H* coverage hinders the overhydrogenation of alkynols and favors the production of alkenols. Remarkably, the DMSO-induced enhancement of alkenol selectivity is applicable to a set of commercial catalysts and to the semihydrogenation of various alkynols. Eventually, a scaled-up 3 × 100 cm2 electrolyzer stack is established to achieve an alkynol conversion of ∼96% and an alkenol selectivity of ∼95% in the cosolvent electrolyte. This work not only presents an electrolyte strategy for boosting alkenol electrosynthesis, but also highlights the possibility of sustainable alkenol electro-production.
期刊介绍:
The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.