{"title":"基于光谱-空间聚类关注的可变形卷积增强层次变换高光谱图像分类","authors":"Yu Fang;Le Sun;Yuhui Zheng;Zebin Wu","doi":"10.1109/TIP.2024.3522809","DOIUrl":null,"url":null,"abstract":"Vision Transformer (ViT), known for capturing non-local features, is an effective tool for hyperspectral image classification (HSIC). However, ViT’s multi-head self-attention (MHSA) mechanism often struggles to balance local details and long-range relationships for complex high-dimensional data, leading to a loss in spectral-spatial information representation. To address this issue, we propose a deformable convolution-enhanced hierarchical Transformer with spectral-spatial cluster attention (SClusterFormer) for HSIC. The model incorporates a unique cluster attention mechanism that utilizes spectral angle similarity and Euclidean distance metrics to enhance the representation of fine-grained homogenous local details and improve discrimination of non-local structures in 3D HSI and 2D morphological data, respectively. Additionally, a dual-branch multiscale deformable convolution framework augmented with frequency-based spectral attention is designed to capture both the discrepancy patterns in high-frequency and overall trend of the spectral profile in low-frequency. Finally, we utilize a cross-feature pixel-level fusion module for collaborative cross-learning and fusion of the results from the dual-branch framework. Comprehensive experiments conducted on multiple HSIC datasets validate the superiority of our proposed SClusterFormer model, which outperforms existing methods. The source code of SClusterFormer is available at <uri>https://github.com/Fang666666/HSIC_SClusterFormer</uri>.","PeriodicalId":94032,"journal":{"name":"IEEE transactions on image processing : a publication of the IEEE Signal Processing Society","volume":"34 ","pages":"701-716"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deformable Convolution-Enhanced Hierarchical Transformer With Spectral-Spatial Cluster Attention for Hyperspectral Image Classification\",\"authors\":\"Yu Fang;Le Sun;Yuhui Zheng;Zebin Wu\",\"doi\":\"10.1109/TIP.2024.3522809\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Vision Transformer (ViT), known for capturing non-local features, is an effective tool for hyperspectral image classification (HSIC). However, ViT’s multi-head self-attention (MHSA) mechanism often struggles to balance local details and long-range relationships for complex high-dimensional data, leading to a loss in spectral-spatial information representation. To address this issue, we propose a deformable convolution-enhanced hierarchical Transformer with spectral-spatial cluster attention (SClusterFormer) for HSIC. The model incorporates a unique cluster attention mechanism that utilizes spectral angle similarity and Euclidean distance metrics to enhance the representation of fine-grained homogenous local details and improve discrimination of non-local structures in 3D HSI and 2D morphological data, respectively. Additionally, a dual-branch multiscale deformable convolution framework augmented with frequency-based spectral attention is designed to capture both the discrepancy patterns in high-frequency and overall trend of the spectral profile in low-frequency. Finally, we utilize a cross-feature pixel-level fusion module for collaborative cross-learning and fusion of the results from the dual-branch framework. Comprehensive experiments conducted on multiple HSIC datasets validate the superiority of our proposed SClusterFormer model, which outperforms existing methods. The source code of SClusterFormer is available at <uri>https://github.com/Fang666666/HSIC_SClusterFormer</uri>.\",\"PeriodicalId\":94032,\"journal\":{\"name\":\"IEEE transactions on image processing : a publication of the IEEE Signal Processing Society\",\"volume\":\"34 \",\"pages\":\"701-716\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE transactions on image processing : a publication of the IEEE Signal Processing Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10820058/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on image processing : a publication of the IEEE Signal Processing Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10820058/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Deformable Convolution-Enhanced Hierarchical Transformer With Spectral-Spatial Cluster Attention for Hyperspectral Image Classification
Vision Transformer (ViT), known for capturing non-local features, is an effective tool for hyperspectral image classification (HSIC). However, ViT’s multi-head self-attention (MHSA) mechanism often struggles to balance local details and long-range relationships for complex high-dimensional data, leading to a loss in spectral-spatial information representation. To address this issue, we propose a deformable convolution-enhanced hierarchical Transformer with spectral-spatial cluster attention (SClusterFormer) for HSIC. The model incorporates a unique cluster attention mechanism that utilizes spectral angle similarity and Euclidean distance metrics to enhance the representation of fine-grained homogenous local details and improve discrimination of non-local structures in 3D HSI and 2D morphological data, respectively. Additionally, a dual-branch multiscale deformable convolution framework augmented with frequency-based spectral attention is designed to capture both the discrepancy patterns in high-frequency and overall trend of the spectral profile in low-frequency. Finally, we utilize a cross-feature pixel-level fusion module for collaborative cross-learning and fusion of the results from the dual-branch framework. Comprehensive experiments conducted on multiple HSIC datasets validate the superiority of our proposed SClusterFormer model, which outperforms existing methods. The source code of SClusterFormer is available at https://github.com/Fang666666/HSIC_SClusterFormer.