用于语音增强的麦克风阵列信号处理和深度学习:结合基于模型和数据驱动的参数估计和滤波方法[基于模型和数据驱动的音频信号处理特刊]

IF 9.4 1区 工程技术 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Reinhold Hëb-Umbach;Tomohiro Nakatani;Marc Delcroix;Christoph Boeddeker;Tsubasa Ochiai
{"title":"用于语音增强的麦克风阵列信号处理和深度学习:结合基于模型和数据驱动的参数估计和滤波方法[基于模型和数据驱动的音频信号处理特刊]","authors":"Reinhold Hëb-Umbach;Tomohiro Nakatani;Marc Delcroix;Christoph Boeddeker;Tsubasa Ochiai","doi":"10.1109/MSP.2024.3451653","DOIUrl":null,"url":null,"abstract":"Multichannel acoustic signal processing is a well-established and powerful tool to exploit the spatial diversity between a target signal and nontarget or noise sources for signal enhancement. However, the textbook solutions for optimal data-dependent spatial filtering rest on the knowledge of second-order statistical moments of the signals, which have traditionally been difficult to acquire. In this contribution, we compare model-based, purely data-driven, and hybrid approaches to parameter estimation and filtering, where the latter tries to combine the benefits of model-based signal processing and data-driven deep learning to overcome their individual deficiencies. We illustrate the underlying design principles with examples from noise reduction, source separation, and dereverberation.","PeriodicalId":13246,"journal":{"name":"IEEE Signal Processing Magazine","volume":"41 6","pages":"12-23"},"PeriodicalIF":9.4000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Microphone Array Signal Processing and Deep Learning for Speech Enhancement: Combining model-based and data-driven approaches to parameter estimation and filtering [Special Issue On Model-Based and Data-Driven Audio Signal Processing]\",\"authors\":\"Reinhold Hëb-Umbach;Tomohiro Nakatani;Marc Delcroix;Christoph Boeddeker;Tsubasa Ochiai\",\"doi\":\"10.1109/MSP.2024.3451653\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multichannel acoustic signal processing is a well-established and powerful tool to exploit the spatial diversity between a target signal and nontarget or noise sources for signal enhancement. However, the textbook solutions for optimal data-dependent spatial filtering rest on the knowledge of second-order statistical moments of the signals, which have traditionally been difficult to acquire. In this contribution, we compare model-based, purely data-driven, and hybrid approaches to parameter estimation and filtering, where the latter tries to combine the benefits of model-based signal processing and data-driven deep learning to overcome their individual deficiencies. We illustrate the underlying design principles with examples from noise reduction, source separation, and dereverberation.\",\"PeriodicalId\":13246,\"journal\":{\"name\":\"IEEE Signal Processing Magazine\",\"volume\":\"41 6\",\"pages\":\"12-23\"},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Signal Processing Magazine\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10819706/\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Signal Processing Magazine","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10819706/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

多通道声信号处理是利用目标信号和非目标或噪声源之间的空间分异来增强信号的一种成熟而强大的工具。然而,教科书上的最优数据相关空间滤波解决方案依赖于信号的二阶统计矩的知识,这在传统上是很难获得的。在这篇文章中,我们比较了基于模型的、纯数据驱动的和混合的参数估计和滤波方法,后者试图结合基于模型的信号处理和数据驱动的深度学习的优点,以克服各自的不足。我们用降噪、源分离和去噪的例子来说明基本的设计原则。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Microphone Array Signal Processing and Deep Learning for Speech Enhancement: Combining model-based and data-driven approaches to parameter estimation and filtering [Special Issue On Model-Based and Data-Driven Audio Signal Processing]
Multichannel acoustic signal processing is a well-established and powerful tool to exploit the spatial diversity between a target signal and nontarget or noise sources for signal enhancement. However, the textbook solutions for optimal data-dependent spatial filtering rest on the knowledge of second-order statistical moments of the signals, which have traditionally been difficult to acquire. In this contribution, we compare model-based, purely data-driven, and hybrid approaches to parameter estimation and filtering, where the latter tries to combine the benefits of model-based signal processing and data-driven deep learning to overcome their individual deficiencies. We illustrate the underlying design principles with examples from noise reduction, source separation, and dereverberation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Signal Processing Magazine
IEEE Signal Processing Magazine 工程技术-工程:电子与电气
CiteScore
27.20
自引率
0.70%
发文量
123
审稿时长
6-12 weeks
期刊介绍: EEE Signal Processing Magazine is a publication that focuses on signal processing research and applications. It publishes tutorial-style articles, columns, and forums that cover a wide range of topics related to signal processing. The magazine aims to provide the research, educational, and professional communities with the latest technical developments, issues, and events in the field. It serves as the main communication platform for the society, addressing important matters that concern all members.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信