{"title":"基于可解释优化的弱光图像增强展开网络","authors":"Wenhui Wu;Jian Weng;Pingping Zhang;Xu Wang;Wenhan Yang;Jianmin Jiang","doi":"10.1109/TPAMI.2024.3524538","DOIUrl":null,"url":null,"abstract":"Retinex model-based methods have shown to be effective in layer-wise manipulation with well-designed priors for low-light image enhancement (LLIE). However, the hand-crafted priors and conventional optimization algorithm adopted to solve the layer decomposition problem result in the lack of adaptivity and efficiency. To this end, this paper proposes a Retinex-based deep unfolding network (URetinex-Net++), which unfolds an optimization problem into a learnable network to decompose a low-light image into reflectance and illumination layers. By formulating the decomposition problem as an implicit priors regularized model, three learning-based modules are carefully designed, responsible for data-dependent initialization, high-efficient unfolding optimization, and fairly-flexible component adjustment, respectively. Particularly, the proposed unfolding optimization module, introducing two networks to adaptively fit implicit priors in the data-driven manner, can realize noise suppression and details preservation for decomposed components. URetinex-Net++ is a further augmented version of URetinex-Net, which introduces a cross-stage fusion block to alleviate the color defect in URetinex-Net. Therefore, boosted performance on LLIE can be obtained in both visual quality and quantitative metrics, where only a few parameters are introduced and little time is cost. Extensive experiments on real-world low-light images qualitatively and quantitatively demonstrate the effectiveness and superiority of the proposed URetinex-Net++ over state-of-the-art methods.","PeriodicalId":94034,"journal":{"name":"IEEE transactions on pattern analysis and machine intelligence","volume":"47 4","pages":"2545-2562"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Interpretable Optimization-Inspired Unfolding Network for Low-Light Image Enhancement\",\"authors\":\"Wenhui Wu;Jian Weng;Pingping Zhang;Xu Wang;Wenhan Yang;Jianmin Jiang\",\"doi\":\"10.1109/TPAMI.2024.3524538\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Retinex model-based methods have shown to be effective in layer-wise manipulation with well-designed priors for low-light image enhancement (LLIE). However, the hand-crafted priors and conventional optimization algorithm adopted to solve the layer decomposition problem result in the lack of adaptivity and efficiency. To this end, this paper proposes a Retinex-based deep unfolding network (URetinex-Net++), which unfolds an optimization problem into a learnable network to decompose a low-light image into reflectance and illumination layers. By formulating the decomposition problem as an implicit priors regularized model, three learning-based modules are carefully designed, responsible for data-dependent initialization, high-efficient unfolding optimization, and fairly-flexible component adjustment, respectively. Particularly, the proposed unfolding optimization module, introducing two networks to adaptively fit implicit priors in the data-driven manner, can realize noise suppression and details preservation for decomposed components. URetinex-Net++ is a further augmented version of URetinex-Net, which introduces a cross-stage fusion block to alleviate the color defect in URetinex-Net. Therefore, boosted performance on LLIE can be obtained in both visual quality and quantitative metrics, where only a few parameters are introduced and little time is cost. Extensive experiments on real-world low-light images qualitatively and quantitatively demonstrate the effectiveness and superiority of the proposed URetinex-Net++ over state-of-the-art methods.\",\"PeriodicalId\":94034,\"journal\":{\"name\":\"IEEE transactions on pattern analysis and machine intelligence\",\"volume\":\"47 4\",\"pages\":\"2545-2562\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE transactions on pattern analysis and machine intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10819641/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on pattern analysis and machine intelligence","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10819641/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Interpretable Optimization-Inspired Unfolding Network for Low-Light Image Enhancement
Retinex model-based methods have shown to be effective in layer-wise manipulation with well-designed priors for low-light image enhancement (LLIE). However, the hand-crafted priors and conventional optimization algorithm adopted to solve the layer decomposition problem result in the lack of adaptivity and efficiency. To this end, this paper proposes a Retinex-based deep unfolding network (URetinex-Net++), which unfolds an optimization problem into a learnable network to decompose a low-light image into reflectance and illumination layers. By formulating the decomposition problem as an implicit priors regularized model, three learning-based modules are carefully designed, responsible for data-dependent initialization, high-efficient unfolding optimization, and fairly-flexible component adjustment, respectively. Particularly, the proposed unfolding optimization module, introducing two networks to adaptively fit implicit priors in the data-driven manner, can realize noise suppression and details preservation for decomposed components. URetinex-Net++ is a further augmented version of URetinex-Net, which introduces a cross-stage fusion block to alleviate the color defect in URetinex-Net. Therefore, boosted performance on LLIE can be obtained in both visual quality and quantitative metrics, where only a few parameters are introduced and little time is cost. Extensive experiments on real-world low-light images qualitatively and quantitatively demonstrate the effectiveness and superiority of the proposed URetinex-Net++ over state-of-the-art methods.