Weixin Cui, Shan Lou, Wenhan Zeng, Visakan Kadirkamanathan, Yuchu Qin, Paul J. Scott, Xiangqian Jiang
{"title":"BlurRes-UNet:一种新的神经网络,用于计量中的自动表面表征","authors":"Weixin Cui, Shan Lou, Wenhan Zeng, Visakan Kadirkamanathan, Yuchu Qin, Paul J. Scott, Xiangqian Jiang","doi":"10.1016/j.compind.2024.104228","DOIUrl":null,"url":null,"abstract":"Surface characterisation is essential in metrology for precise measurement and analysis of surface features, ensuring product quality and compliance with industry standards. Form removal is the primary step in surface characterisation, isolating features of interest by eliminating the primary shape from measurements. Traditional least-squares methods, as specified in ISO standards, are effective but offer limited adaptability for diverse surfaces and often require manual parameter tuning. With this limitation in mind, this paper proposes BlurRes-UNet, a deep learning-based model designed for fully automatic form removal. Built on an encoder–decoder architecture with residual learning, skip connections, and a tailored loss function, the model incorporates domain knowledge, feature engineering, and regularisation techniques to optimise performance with limited training data. The model is evaluated against traditional least squares methods and assessed using various strategies to demonstrate its performance and robustness. It processes surfaces of 256 × 256 resolution in 7.32 ms per sample on a T4 GPU, achieving superior accuracy in recognising reference forms across diverse surfaces compared to traditional methods. The results suggest that the model is capable of accurately recognising different order reference forms from diverse surfaces, facilitating an autonomous surface characterisation system without the need for manual intervention.","PeriodicalId":55219,"journal":{"name":"Computers in Industry","volume":"19 1","pages":""},"PeriodicalIF":8.2000,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"BlurRes-UNet: A novel neural network for automated surface characterisation in metrology\",\"authors\":\"Weixin Cui, Shan Lou, Wenhan Zeng, Visakan Kadirkamanathan, Yuchu Qin, Paul J. Scott, Xiangqian Jiang\",\"doi\":\"10.1016/j.compind.2024.104228\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Surface characterisation is essential in metrology for precise measurement and analysis of surface features, ensuring product quality and compliance with industry standards. Form removal is the primary step in surface characterisation, isolating features of interest by eliminating the primary shape from measurements. Traditional least-squares methods, as specified in ISO standards, are effective but offer limited adaptability for diverse surfaces and often require manual parameter tuning. With this limitation in mind, this paper proposes BlurRes-UNet, a deep learning-based model designed for fully automatic form removal. Built on an encoder–decoder architecture with residual learning, skip connections, and a tailored loss function, the model incorporates domain knowledge, feature engineering, and regularisation techniques to optimise performance with limited training data. The model is evaluated against traditional least squares methods and assessed using various strategies to demonstrate its performance and robustness. It processes surfaces of 256 × 256 resolution in 7.32 ms per sample on a T4 GPU, achieving superior accuracy in recognising reference forms across diverse surfaces compared to traditional methods. The results suggest that the model is capable of accurately recognising different order reference forms from diverse surfaces, facilitating an autonomous surface characterisation system without the need for manual intervention.\",\"PeriodicalId\":55219,\"journal\":{\"name\":\"Computers in Industry\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2024-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers in Industry\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1016/j.compind.2024.104228\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers in Industry","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1016/j.compind.2024.104228","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
BlurRes-UNet: A novel neural network for automated surface characterisation in metrology
Surface characterisation is essential in metrology for precise measurement and analysis of surface features, ensuring product quality and compliance with industry standards. Form removal is the primary step in surface characterisation, isolating features of interest by eliminating the primary shape from measurements. Traditional least-squares methods, as specified in ISO standards, are effective but offer limited adaptability for diverse surfaces and often require manual parameter tuning. With this limitation in mind, this paper proposes BlurRes-UNet, a deep learning-based model designed for fully automatic form removal. Built on an encoder–decoder architecture with residual learning, skip connections, and a tailored loss function, the model incorporates domain knowledge, feature engineering, and regularisation techniques to optimise performance with limited training data. The model is evaluated against traditional least squares methods and assessed using various strategies to demonstrate its performance and robustness. It processes surfaces of 256 × 256 resolution in 7.32 ms per sample on a T4 GPU, achieving superior accuracy in recognising reference forms across diverse surfaces compared to traditional methods. The results suggest that the model is capable of accurately recognising different order reference forms from diverse surfaces, facilitating an autonomous surface characterisation system without the need for manual intervention.
期刊介绍:
The objective of Computers in Industry is to present original, high-quality, application-oriented research papers that:
• Illuminate emerging trends and possibilities in the utilization of Information and Communication Technology in industry;
• Establish connections or integrations across various technology domains within the expansive realm of computer applications for industry;
• Foster connections or integrations across diverse application areas of ICT in industry.