{"title":"无创机器学习模型在冠状动脉CT造影中检测中度狭窄程度的稳定型心绞痛患者的病变特异性缺血。","authors":"Hiroshi Hamasaki, Hidetaka Arimura, Yuzo Yamasaki, Takayuki Yamamoto, Mitsuhiro Fukata, Tetsuya Matoba, Toyoyuki Kato, Kousei Ishigami","doi":"10.1007/s13246-024-01503-z","DOIUrl":null,"url":null,"abstract":"<p><p>This study proposed noninvasive machine-learning models for the detection of lesion-specific ischemia (LSI) in patients with stable angina with intermediate stenosis severity based on coronary computed tomography (CT) angiography. This single-center retrospective study analyzed 76 patients (99 vessels) with stable angina who underwent coronary CT angiography (CCTA) and had intermediate stenosis severity (40-69%) on invasive coronary angiography. LSI, defined as a resting full-cycle ratio < 0.86 or fractional flow reserve ≤ 0.80, was determined in 40 patients (46 vessels) using a hybrid resting full-cycle ratio-fractional flow reserve strategy. The resting full-cycle ratio and/or fractional flow reserve were measured using invasive coronary angiography as references for functional severity indices of coronary stenosis in the machine-learning models. LSI detection models were constructed using noninvasive machine-learning models that predicted the resting full-cycle ratio and fractional flow reserve by feeding machine-learning models with image features extracted from CCTA. The diagnostic performance of the proposed LSI detection models was assessed using a nested 10-fold cross-validation test. The LSI detection models with the highest diagnostic performance achieved an accuracy of 0.88 (95% CI: 0.81, 0.94), sensitivity of 0.78 (95% CI: 0.70, 0.86) and specificity of 0.96 (95% CI: 0.92, 1.00) on a vessel basis and 0.88 (95% CI: 0.81, 0.95), 0.80 (95% CI: 0.70, 0.86) and 0.97 (95% CI: 0.92, 1.00), respectively, on a patient basis. These findings suggest that LSI detection models with features extracted from CCTA can noninvasively detect LSI in patients with stable angina with intermediate stenosis severity.</p>","PeriodicalId":48490,"journal":{"name":"Physical and Engineering Sciences in Medicine","volume":" ","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Noninvasive machine-learning models for the detection of lesion-specific ischemia in patients with stable angina with intermediate stenosis severity on coronary CT angiography.\",\"authors\":\"Hiroshi Hamasaki, Hidetaka Arimura, Yuzo Yamasaki, Takayuki Yamamoto, Mitsuhiro Fukata, Tetsuya Matoba, Toyoyuki Kato, Kousei Ishigami\",\"doi\":\"10.1007/s13246-024-01503-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study proposed noninvasive machine-learning models for the detection of lesion-specific ischemia (LSI) in patients with stable angina with intermediate stenosis severity based on coronary computed tomography (CT) angiography. This single-center retrospective study analyzed 76 patients (99 vessels) with stable angina who underwent coronary CT angiography (CCTA) and had intermediate stenosis severity (40-69%) on invasive coronary angiography. LSI, defined as a resting full-cycle ratio < 0.86 or fractional flow reserve ≤ 0.80, was determined in 40 patients (46 vessels) using a hybrid resting full-cycle ratio-fractional flow reserve strategy. The resting full-cycle ratio and/or fractional flow reserve were measured using invasive coronary angiography as references for functional severity indices of coronary stenosis in the machine-learning models. LSI detection models were constructed using noninvasive machine-learning models that predicted the resting full-cycle ratio and fractional flow reserve by feeding machine-learning models with image features extracted from CCTA. The diagnostic performance of the proposed LSI detection models was assessed using a nested 10-fold cross-validation test. The LSI detection models with the highest diagnostic performance achieved an accuracy of 0.88 (95% CI: 0.81, 0.94), sensitivity of 0.78 (95% CI: 0.70, 0.86) and specificity of 0.96 (95% CI: 0.92, 1.00) on a vessel basis and 0.88 (95% CI: 0.81, 0.95), 0.80 (95% CI: 0.70, 0.86) and 0.97 (95% CI: 0.92, 1.00), respectively, on a patient basis. These findings suggest that LSI detection models with features extracted from CCTA can noninvasively detect LSI in patients with stable angina with intermediate stenosis severity.</p>\",\"PeriodicalId\":48490,\"journal\":{\"name\":\"Physical and Engineering Sciences in Medicine\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical and Engineering Sciences in Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s13246-024-01503-z\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical and Engineering Sciences in Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s13246-024-01503-z","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Noninvasive machine-learning models for the detection of lesion-specific ischemia in patients with stable angina with intermediate stenosis severity on coronary CT angiography.
This study proposed noninvasive machine-learning models for the detection of lesion-specific ischemia (LSI) in patients with stable angina with intermediate stenosis severity based on coronary computed tomography (CT) angiography. This single-center retrospective study analyzed 76 patients (99 vessels) with stable angina who underwent coronary CT angiography (CCTA) and had intermediate stenosis severity (40-69%) on invasive coronary angiography. LSI, defined as a resting full-cycle ratio < 0.86 or fractional flow reserve ≤ 0.80, was determined in 40 patients (46 vessels) using a hybrid resting full-cycle ratio-fractional flow reserve strategy. The resting full-cycle ratio and/or fractional flow reserve were measured using invasive coronary angiography as references for functional severity indices of coronary stenosis in the machine-learning models. LSI detection models were constructed using noninvasive machine-learning models that predicted the resting full-cycle ratio and fractional flow reserve by feeding machine-learning models with image features extracted from CCTA. The diagnostic performance of the proposed LSI detection models was assessed using a nested 10-fold cross-validation test. The LSI detection models with the highest diagnostic performance achieved an accuracy of 0.88 (95% CI: 0.81, 0.94), sensitivity of 0.78 (95% CI: 0.70, 0.86) and specificity of 0.96 (95% CI: 0.92, 1.00) on a vessel basis and 0.88 (95% CI: 0.81, 0.95), 0.80 (95% CI: 0.70, 0.86) and 0.97 (95% CI: 0.92, 1.00), respectively, on a patient basis. These findings suggest that LSI detection models with features extracted from CCTA can noninvasively detect LSI in patients with stable angina with intermediate stenosis severity.