{"title":"NRP1指示产生il -17的ilc3驱动结肠炎的进展。","authors":"Ying Wang, Jianye Wang, Gaoyu Liu, Xianfu Yi, Jingyi Wu, Hailong Cao, Lijuan Zhang, Pan Zhou, Yong Fan, Ying Yu, Qiang Liu, Zhi Yao, Haitao Wang, Jie Zhou","doi":"10.1038/s41423-024-01246-7","DOIUrl":null,"url":null,"abstract":"Group 3 innate lymphoid cells (ILC3s) control tissue homeostasis and orchestrate mucosal inflammation; however, the precise mechanisms governing ILC3 activity are fully understood. Here, we identified the transmembrane protein neuropilin-1 (NRP1) as a positive regulator of interleukin (IL)-17-producing ILC3s in the intestine. NRP1 was markedly upregulated in intestinal mucosal biopsies from patients with inflammatory bowel disease (IBD) compared with healthy controls. Genetic deficiency of NRP1 reduces the frequency of ILC3s in the gut and impairs their production of IL-17A in an NF-κB signaling-dependent and cell-intrinsic manner. The diminished IL-17A production in ILC3s altered the composition of the microbiota and improved the outcome of dextran sodium sulfate (DSS)-induced colitis. Furthermore, pharmacological inhibition of NRP1 with EG00229 alleviated the severity of colitis. These observations demonstrated the critical role of NRP1 in the control of intestinal ILC3s, suggesting that NRP1 is a potential therapeutic target for IBD.","PeriodicalId":9950,"journal":{"name":"Cellular &Molecular Immunology","volume":"22 2","pages":"161-175"},"PeriodicalIF":21.8000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"NRP1 instructs IL-17-producing ILC3s to drive colitis progression\",\"authors\":\"Ying Wang, Jianye Wang, Gaoyu Liu, Xianfu Yi, Jingyi Wu, Hailong Cao, Lijuan Zhang, Pan Zhou, Yong Fan, Ying Yu, Qiang Liu, Zhi Yao, Haitao Wang, Jie Zhou\",\"doi\":\"10.1038/s41423-024-01246-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Group 3 innate lymphoid cells (ILC3s) control tissue homeostasis and orchestrate mucosal inflammation; however, the precise mechanisms governing ILC3 activity are fully understood. Here, we identified the transmembrane protein neuropilin-1 (NRP1) as a positive regulator of interleukin (IL)-17-producing ILC3s in the intestine. NRP1 was markedly upregulated in intestinal mucosal biopsies from patients with inflammatory bowel disease (IBD) compared with healthy controls. Genetic deficiency of NRP1 reduces the frequency of ILC3s in the gut and impairs their production of IL-17A in an NF-κB signaling-dependent and cell-intrinsic manner. The diminished IL-17A production in ILC3s altered the composition of the microbiota and improved the outcome of dextran sodium sulfate (DSS)-induced colitis. Furthermore, pharmacological inhibition of NRP1 with EG00229 alleviated the severity of colitis. These observations demonstrated the critical role of NRP1 in the control of intestinal ILC3s, suggesting that NRP1 is a potential therapeutic target for IBD.\",\"PeriodicalId\":9950,\"journal\":{\"name\":\"Cellular &Molecular Immunology\",\"volume\":\"22 2\",\"pages\":\"161-175\"},\"PeriodicalIF\":21.8000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cellular &Molecular Immunology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.nature.com/articles/s41423-024-01246-7\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular &Molecular Immunology","FirstCategoryId":"3","ListUrlMain":"https://www.nature.com/articles/s41423-024-01246-7","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
NRP1 instructs IL-17-producing ILC3s to drive colitis progression
Group 3 innate lymphoid cells (ILC3s) control tissue homeostasis and orchestrate mucosal inflammation; however, the precise mechanisms governing ILC3 activity are fully understood. Here, we identified the transmembrane protein neuropilin-1 (NRP1) as a positive regulator of interleukin (IL)-17-producing ILC3s in the intestine. NRP1 was markedly upregulated in intestinal mucosal biopsies from patients with inflammatory bowel disease (IBD) compared with healthy controls. Genetic deficiency of NRP1 reduces the frequency of ILC3s in the gut and impairs their production of IL-17A in an NF-κB signaling-dependent and cell-intrinsic manner. The diminished IL-17A production in ILC3s altered the composition of the microbiota and improved the outcome of dextran sodium sulfate (DSS)-induced colitis. Furthermore, pharmacological inhibition of NRP1 with EG00229 alleviated the severity of colitis. These observations demonstrated the critical role of NRP1 in the control of intestinal ILC3s, suggesting that NRP1 is a potential therapeutic target for IBD.
期刊介绍:
Cellular & Molecular Immunology, a monthly journal from the Chinese Society of Immunology and the University of Science and Technology of China, serves as a comprehensive platform covering both basic immunology research and clinical applications. The journal publishes a variety of article types, including Articles, Review Articles, Mini Reviews, and Short Communications, focusing on diverse aspects of cellular and molecular immunology.