Vadym Buncha, Liwei Lang, Katie Anne Fopiano, Daria V Ilatovskaya, Gaston Kapuku, Alexander D Verin, Zsolt Bagi
{"title":"内皮细胞选择性粘附分子缺乏表现出由于内皮一氧化氮信号受损而增加的肺血管阻力。","authors":"Vadym Buncha, Liwei Lang, Katie Anne Fopiano, Daria V Ilatovskaya, Gaston Kapuku, Alexander D Verin, Zsolt Bagi","doi":"10.1152/ajpheart.00593.2024","DOIUrl":null,"url":null,"abstract":"<p><p>Endothelial cell-selective adhesion molecule (ESAM) is a member of tight junction molecules, highly abundant in the heart and the lung, and plays a role in regulating endothelial cell permeability. We previously reported that mice with genetic ESAM deficiency (<i>ESAM</i><sup>-/-</sup>) exhibit coronary microvascular dysfunction leading to the development of left ventricular diastolic dysfunction. Here, we hypothesize that <i>ESAM</i><sup>-/-</sup> mice display impairments in the pulmonary vasculature, affecting the overall pulmonary vascular resistance (PVR). We utilized <i>ESAM</i><sup>-/-</sup> mice and employed isolated, ventilated, and perfused whole lung preparation to assess PVR independently of cardiac function. PVR was assessed in response to stepwise increases in flow, and also in response to perfusion of the endothelium-dependent agonist, bradykinin, the thromboxane analog, U46619, and the nitric oxide (NO) donor sodium nitroprusside (SNP). We found that PVR, at every applied flow rate, is significantly elevated in <i>ESAM</i><sup>-/-</sup> mice compared with WT mice. Bradykinin-induced reduction in PVR and U46619-induced increase in PVR were both diminished in <i>ESAM</i><sup>-/-</sup> mice, whereas SNP-induced responses were similar in wild-type (WT) and <i>ESAM</i><sup>-/-</sup> mice. Inhibition of NO synthase with <i>N</i>(ω)-nitro-l-arginine methyl ester increased agonist-induced PVR in WT but not in <i>ESAM</i><sup>-/-</sup> mice. Pulmonary arteries isolated from <i>ESAM</i><sup>-/-</sup> mice exhibited a reduced level of phospho-Ser473-Akt and phospho-Ser1177-eNOS. Furthermore, in human lung microvascular endothelial cells cultured under flow conditions, we found that siRNA-mediated knockdown of ESAM impaired fluid shear stress-induced endothelial cell alignment. Thus, we suggest that ESAM plays an important role in the endothelium-dependent, flow/shear stress- and vasoactive agonist-stimulated, and NO-mediated maintenance of PVR in mice.<b>NEW & NOTEWORTHY</b> Our study reveals a novel role for ESAM in contributing to the maintenance of pulmonary vascular resistance under normal physiological conditions. Employing mice with global genetic deficiency of ESAM and using isolated whole lung preparation, we show significant impairments in nitric oxide-mediated pulmonary artery function. In vitro cell culture studies demonstrate impaired fluid shear stress-induced cell alignment in human lung endothelial cells after siRNA-mediated ESAM knockdown.</p>","PeriodicalId":7692,"journal":{"name":"American journal of physiology. Heart and circulatory physiology","volume":" ","pages":"H283-H293"},"PeriodicalIF":4.1000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Endothelial cell-selective adhesion molecule deficiency exhibits increased pulmonary vascular resistance due to impaired endothelial nitric oxide signaling.\",\"authors\":\"Vadym Buncha, Liwei Lang, Katie Anne Fopiano, Daria V Ilatovskaya, Gaston Kapuku, Alexander D Verin, Zsolt Bagi\",\"doi\":\"10.1152/ajpheart.00593.2024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Endothelial cell-selective adhesion molecule (ESAM) is a member of tight junction molecules, highly abundant in the heart and the lung, and plays a role in regulating endothelial cell permeability. We previously reported that mice with genetic ESAM deficiency (<i>ESAM</i><sup>-/-</sup>) exhibit coronary microvascular dysfunction leading to the development of left ventricular diastolic dysfunction. Here, we hypothesize that <i>ESAM</i><sup>-/-</sup> mice display impairments in the pulmonary vasculature, affecting the overall pulmonary vascular resistance (PVR). We utilized <i>ESAM</i><sup>-/-</sup> mice and employed isolated, ventilated, and perfused whole lung preparation to assess PVR independently of cardiac function. PVR was assessed in response to stepwise increases in flow, and also in response to perfusion of the endothelium-dependent agonist, bradykinin, the thromboxane analog, U46619, and the nitric oxide (NO) donor sodium nitroprusside (SNP). We found that PVR, at every applied flow rate, is significantly elevated in <i>ESAM</i><sup>-/-</sup> mice compared with WT mice. Bradykinin-induced reduction in PVR and U46619-induced increase in PVR were both diminished in <i>ESAM</i><sup>-/-</sup> mice, whereas SNP-induced responses were similar in wild-type (WT) and <i>ESAM</i><sup>-/-</sup> mice. Inhibition of NO synthase with <i>N</i>(ω)-nitro-l-arginine methyl ester increased agonist-induced PVR in WT but not in <i>ESAM</i><sup>-/-</sup> mice. Pulmonary arteries isolated from <i>ESAM</i><sup>-/-</sup> mice exhibited a reduced level of phospho-Ser473-Akt and phospho-Ser1177-eNOS. Furthermore, in human lung microvascular endothelial cells cultured under flow conditions, we found that siRNA-mediated knockdown of ESAM impaired fluid shear stress-induced endothelial cell alignment. Thus, we suggest that ESAM plays an important role in the endothelium-dependent, flow/shear stress- and vasoactive agonist-stimulated, and NO-mediated maintenance of PVR in mice.<b>NEW & NOTEWORTHY</b> Our study reveals a novel role for ESAM in contributing to the maintenance of pulmonary vascular resistance under normal physiological conditions. Employing mice with global genetic deficiency of ESAM and using isolated whole lung preparation, we show significant impairments in nitric oxide-mediated pulmonary artery function. In vitro cell culture studies demonstrate impaired fluid shear stress-induced cell alignment in human lung endothelial cells after siRNA-mediated ESAM knockdown.</p>\",\"PeriodicalId\":7692,\"journal\":{\"name\":\"American journal of physiology. Heart and circulatory physiology\",\"volume\":\" \",\"pages\":\"H283-H293\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American journal of physiology. Heart and circulatory physiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1152/ajpheart.00593.2024\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/31 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CARDIAC & CARDIOVASCULAR SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of physiology. Heart and circulatory physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1152/ajpheart.00593.2024","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/31 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0
摘要
内皮细胞选择性粘附分子(Endothelial cell-selective adhesion molecule, ESAM)是紧密连接分子中的一员,在心脏和肺中含量丰富,具有调节内皮细胞通透性的作用。我们之前报道过遗传ESAM缺乏(ESAM-/-)的小鼠表现出冠状动脉微血管功能障碍,导致左室舒张功能障碍。在这里,我们假设ESAM-/-小鼠在肺血管系统中表现出损伤,影响了整体肺血管阻力(PVR)。我们采用ESAM-/-小鼠,并采用分离、通气和灌注全肺制备,独立于心功能评估PVR。评估PVR对血流逐步增加的反应,以及对内皮依赖性激动剂缓激肽、血栓素类似物U46619和一氧化氮(NO)供体硝普钠(SNP)灌注的反应。我们发现,与WT小鼠相比,在每个施加流速下,ESAM-/-小鼠的PVR显著升高。在ESAM-/-小鼠中,缓激肽诱导的PVR减少和u46619诱导的PVR增加均减少,而snp诱导的反应在WT和ESAM-/-小鼠中相似。N(ω)-硝基- l -精氨酸甲酯抑制NO合成酶增加了WT激动剂诱导的PVR,但在ESAM-/-小鼠中没有。ESAM-/-小鼠肺动脉分离的phospho-Ser473-Akt和phospho-Ser1177-eNOS水平降低。此外,在流动条件下培养的人肺微血管内皮细胞中,我们发现sirna介导的ESAM敲低会损害流体剪切应力诱导的内皮细胞排列。因此,我们认为ESAM在内皮依赖性、血流/剪切应力和血管活性激动剂刺激、no介导的小鼠PVR维持中发挥重要作用。
Endothelial cell-selective adhesion molecule deficiency exhibits increased pulmonary vascular resistance due to impaired endothelial nitric oxide signaling.
Endothelial cell-selective adhesion molecule (ESAM) is a member of tight junction molecules, highly abundant in the heart and the lung, and plays a role in regulating endothelial cell permeability. We previously reported that mice with genetic ESAM deficiency (ESAM-/-) exhibit coronary microvascular dysfunction leading to the development of left ventricular diastolic dysfunction. Here, we hypothesize that ESAM-/- mice display impairments in the pulmonary vasculature, affecting the overall pulmonary vascular resistance (PVR). We utilized ESAM-/- mice and employed isolated, ventilated, and perfused whole lung preparation to assess PVR independently of cardiac function. PVR was assessed in response to stepwise increases in flow, and also in response to perfusion of the endothelium-dependent agonist, bradykinin, the thromboxane analog, U46619, and the nitric oxide (NO) donor sodium nitroprusside (SNP). We found that PVR, at every applied flow rate, is significantly elevated in ESAM-/- mice compared with WT mice. Bradykinin-induced reduction in PVR and U46619-induced increase in PVR were both diminished in ESAM-/- mice, whereas SNP-induced responses were similar in wild-type (WT) and ESAM-/- mice. Inhibition of NO synthase with N(ω)-nitro-l-arginine methyl ester increased agonist-induced PVR in WT but not in ESAM-/- mice. Pulmonary arteries isolated from ESAM-/- mice exhibited a reduced level of phospho-Ser473-Akt and phospho-Ser1177-eNOS. Furthermore, in human lung microvascular endothelial cells cultured under flow conditions, we found that siRNA-mediated knockdown of ESAM impaired fluid shear stress-induced endothelial cell alignment. Thus, we suggest that ESAM plays an important role in the endothelium-dependent, flow/shear stress- and vasoactive agonist-stimulated, and NO-mediated maintenance of PVR in mice.NEW & NOTEWORTHY Our study reveals a novel role for ESAM in contributing to the maintenance of pulmonary vascular resistance under normal physiological conditions. Employing mice with global genetic deficiency of ESAM and using isolated whole lung preparation, we show significant impairments in nitric oxide-mediated pulmonary artery function. In vitro cell culture studies demonstrate impaired fluid shear stress-induced cell alignment in human lung endothelial cells after siRNA-mediated ESAM knockdown.
期刊介绍:
The American Journal of Physiology-Heart and Circulatory Physiology publishes original investigations, reviews and perspectives on the physiology of the heart, vasculature, and lymphatics. These articles include experimental and theoretical studies of cardiovascular function at all levels of organization ranging from the intact and integrative animal and organ function to the cellular, subcellular, and molecular levels. The journal embraces new descriptions of these functions and their control systems, as well as their basis in biochemistry, biophysics, genetics, and cell biology. Preference is given to research that provides significant new mechanistic physiological insights that determine the performance of the normal and abnormal heart and circulation.