尿肽酶在健康和肾脏疾病中揭示胶原降解的研究。

IF 3.4 4区 生物学 Q2 BIOCHEMICAL RESEARCH METHODS
Proteomics Pub Date : 2024-12-30 DOI:10.1002/pmic.202400279
Ioanna K Mina, Luis F Iglesias-Martinez, Matthias Ley, Lucas Fillinger, Paul Perco, Justyna Siwy, Harald Mischak, Vera Jankowski
{"title":"尿肽酶在健康和肾脏疾病中揭示胶原降解的研究。","authors":"Ioanna K Mina, Luis F Iglesias-Martinez, Matthias Ley, Lucas Fillinger, Paul Perco, Justyna Siwy, Harald Mischak, Vera Jankowski","doi":"10.1002/pmic.202400279","DOIUrl":null,"url":null,"abstract":"<p><p>Naturally occurring fragments of collagen type I alpha 1 chain (COL1A1) have been previously associated with chronic kidney disease (CKD), with some fragments showing positive and others negative associations. Using urinary peptidome data from healthy individuals (n = 1131) and CKD patients (n = 5585) this aspect was investigated in detail. Based on the hypothesis that many collagen peptides are derived not from the full, mature collagen molecule, but from (larger) collagen degradation products, relationships between COL1A1 peptides containing identical sequences were investigated, with the smaller (offspring) peptide being a possible degradation product of the larger (parent) one. The strongest correlations were found for relationships where the parent differed by a maximum of three amino acids from the offspring, indicating an exopeptidase-regulated stepwise degradation process. Regression analysis indicated that CKD affects this degradation process. A comparison of matched CKD patients and control individuals (n = 612 each) showed that peptides at the start of the degradation process were consistently downregulated in CKD, indicating an attenuation of COL1A1 endopeptidase-mediated degradation. However, as these peptides undergo further degradation, likely mediated by exopeptidases, this downregulation can become less significant or even reverse, leading to an upregulation of later-stage fragments and potentially explaining the inconsistencies observed in previous studies.</p>","PeriodicalId":224,"journal":{"name":"Proteomics","volume":" ","pages":"e202400279"},"PeriodicalIF":3.4000,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation of the Urinary Peptidome to Unravel Collagen Degradation in Health and Kidney Disease.\",\"authors\":\"Ioanna K Mina, Luis F Iglesias-Martinez, Matthias Ley, Lucas Fillinger, Paul Perco, Justyna Siwy, Harald Mischak, Vera Jankowski\",\"doi\":\"10.1002/pmic.202400279\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Naturally occurring fragments of collagen type I alpha 1 chain (COL1A1) have been previously associated with chronic kidney disease (CKD), with some fragments showing positive and others negative associations. Using urinary peptidome data from healthy individuals (n = 1131) and CKD patients (n = 5585) this aspect was investigated in detail. Based on the hypothesis that many collagen peptides are derived not from the full, mature collagen molecule, but from (larger) collagen degradation products, relationships between COL1A1 peptides containing identical sequences were investigated, with the smaller (offspring) peptide being a possible degradation product of the larger (parent) one. The strongest correlations were found for relationships where the parent differed by a maximum of three amino acids from the offspring, indicating an exopeptidase-regulated stepwise degradation process. Regression analysis indicated that CKD affects this degradation process. A comparison of matched CKD patients and control individuals (n = 612 each) showed that peptides at the start of the degradation process were consistently downregulated in CKD, indicating an attenuation of COL1A1 endopeptidase-mediated degradation. However, as these peptides undergo further degradation, likely mediated by exopeptidases, this downregulation can become less significant or even reverse, leading to an upregulation of later-stage fragments and potentially explaining the inconsistencies observed in previous studies.</p>\",\"PeriodicalId\":224,\"journal\":{\"name\":\"Proteomics\",\"volume\":\" \",\"pages\":\"e202400279\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proteomics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1002/pmic.202400279\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proteomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/pmic.202400279","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

天然存在的胶原I型α 1链片段(COL1A1)先前与慢性肾脏疾病(CKD)相关,其中一些片段显示出阳性,另一些片段显示出阴性。使用健康个体(n = 1131)和CKD患者(n = 5585)的尿肽水平数据对这方面进行了详细研究。基于许多胶原蛋白肽不是来自完整的、成熟的胶原蛋白分子,而是来自(较大的)胶原蛋白降解产物的假设,我们研究了含有相同序列的COL1A1肽之间的关系,较小的(后代)肽可能是较大的(亲本)肽的降解产物。最强的相关性被发现在亲本与子代最多差异三个氨基酸的关系中,表明一个外肽酶调节的逐步降解过程。回归分析表明CKD影响了这一降解过程。匹配的CKD患者和对照个体(n = 612)的比较显示,在CKD中,降解过程开始时的肽持续下调,表明COL1A1内多肽酶介导的降解减弱。然而,随着这些肽进一步降解,可能由外肽酶介导,这种下调可能变得不那么显著甚至逆转,导致后期片段的上调,并可能解释先前研究中观察到的不一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Investigation of the Urinary Peptidome to Unravel Collagen Degradation in Health and Kidney Disease.

Naturally occurring fragments of collagen type I alpha 1 chain (COL1A1) have been previously associated with chronic kidney disease (CKD), with some fragments showing positive and others negative associations. Using urinary peptidome data from healthy individuals (n = 1131) and CKD patients (n = 5585) this aspect was investigated in detail. Based on the hypothesis that many collagen peptides are derived not from the full, mature collagen molecule, but from (larger) collagen degradation products, relationships between COL1A1 peptides containing identical sequences were investigated, with the smaller (offspring) peptide being a possible degradation product of the larger (parent) one. The strongest correlations were found for relationships where the parent differed by a maximum of three amino acids from the offspring, indicating an exopeptidase-regulated stepwise degradation process. Regression analysis indicated that CKD affects this degradation process. A comparison of matched CKD patients and control individuals (n = 612 each) showed that peptides at the start of the degradation process were consistently downregulated in CKD, indicating an attenuation of COL1A1 endopeptidase-mediated degradation. However, as these peptides undergo further degradation, likely mediated by exopeptidases, this downregulation can become less significant or even reverse, leading to an upregulation of later-stage fragments and potentially explaining the inconsistencies observed in previous studies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Proteomics
Proteomics 生物-生化研究方法
CiteScore
6.30
自引率
5.90%
发文量
193
审稿时长
3 months
期刊介绍: PROTEOMICS is the premier international source for information on all aspects of applications and technologies, including software, in proteomics and other "omics". The journal includes but is not limited to proteomics, genomics, transcriptomics, metabolomics and lipidomics, and systems biology approaches. Papers describing novel applications of proteomics and integration of multi-omics data and approaches are especially welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信