Nicholas W. Bard, T. Jonathan Davies, Quentin C. B. Cronk
{"title":"从植物基因组副捕获物中评估真菌多样性的蛇形管道。","authors":"Nicholas W. Bard, T. Jonathan Davies, Quentin C. B. Cronk","doi":"10.1111/1755-0998.14056","DOIUrl":null,"url":null,"abstract":"<p>Relatively little is known of the host associations and compatibility of fungal plant pathogens and endophytes. Publicly available plant genomic DNA can be mined to detect incidental fungal DNA, but taxonomic assignment can be challenging due to short lengths and variable discriminative power among different genomic regions and taxa. Here, we introduce a computationally lightweight and accessible Snakemake pipeline for rapid detection and classification (identification and assignment to taxonomic rank) of pathogenic and endophytic fungi (and other fungi associated with plants) that targets the internal transcribed spacer (ITS) region, a fungal barcode standard. We include methods for maximising query sequence length, which gives higher support for ITS1 and ITS2 taxonomic classifications by extending to other fragments of the ITS region and providing taxon-specific local cut-off and confidence scores. We demonstrate our pipeline with a case study using public genomic sequence data for six diverse plant species, including four species within <i>Betula</i>, an ecologically and economically important broadleaved forest tree genus, a shrub and a grass. Our pipeline classified fungi within minutes to a few hours per host individual, with 204 different fungal genera identified at high confidence (≥ 70%). Our pipeline detected and classified pathogenic and endophytic genera known to associate with <i>Betula</i>, and many others with no prior record of association. Our pipeline, leveraging existing sequence data, has several potential applications, including detecting cryptic fungal pathogens and helping characterise the endophytic fungal microbiome, bioprospecting commercially useful fungal species, and determining the plant host range of fungi.</p>","PeriodicalId":211,"journal":{"name":"Molecular Ecology Resources","volume":"25 3","pages":""},"PeriodicalIF":5.5000,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1755-0998.14056","citationCount":"0","resultStr":"{\"title\":\"Teknonaturalist: A Snakemake Pipeline for Assessing Fungal Diversity From Plant Genome Bycatch\",\"authors\":\"Nicholas W. Bard, T. Jonathan Davies, Quentin C. B. Cronk\",\"doi\":\"10.1111/1755-0998.14056\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Relatively little is known of the host associations and compatibility of fungal plant pathogens and endophytes. Publicly available plant genomic DNA can be mined to detect incidental fungal DNA, but taxonomic assignment can be challenging due to short lengths and variable discriminative power among different genomic regions and taxa. Here, we introduce a computationally lightweight and accessible Snakemake pipeline for rapid detection and classification (identification and assignment to taxonomic rank) of pathogenic and endophytic fungi (and other fungi associated with plants) that targets the internal transcribed spacer (ITS) region, a fungal barcode standard. We include methods for maximising query sequence length, which gives higher support for ITS1 and ITS2 taxonomic classifications by extending to other fragments of the ITS region and providing taxon-specific local cut-off and confidence scores. We demonstrate our pipeline with a case study using public genomic sequence data for six diverse plant species, including four species within <i>Betula</i>, an ecologically and economically important broadleaved forest tree genus, a shrub and a grass. Our pipeline classified fungi within minutes to a few hours per host individual, with 204 different fungal genera identified at high confidence (≥ 70%). Our pipeline detected and classified pathogenic and endophytic genera known to associate with <i>Betula</i>, and many others with no prior record of association. Our pipeline, leveraging existing sequence data, has several potential applications, including detecting cryptic fungal pathogens and helping characterise the endophytic fungal microbiome, bioprospecting commercially useful fungal species, and determining the plant host range of fungi.</p>\",\"PeriodicalId\":211,\"journal\":{\"name\":\"Molecular Ecology Resources\",\"volume\":\"25 3\",\"pages\":\"\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2024-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1755-0998.14056\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Ecology Resources\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/1755-0998.14056\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Ecology Resources","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1755-0998.14056","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Teknonaturalist: A Snakemake Pipeline for Assessing Fungal Diversity From Plant Genome Bycatch
Relatively little is known of the host associations and compatibility of fungal plant pathogens and endophytes. Publicly available plant genomic DNA can be mined to detect incidental fungal DNA, but taxonomic assignment can be challenging due to short lengths and variable discriminative power among different genomic regions and taxa. Here, we introduce a computationally lightweight and accessible Snakemake pipeline for rapid detection and classification (identification and assignment to taxonomic rank) of pathogenic and endophytic fungi (and other fungi associated with plants) that targets the internal transcribed spacer (ITS) region, a fungal barcode standard. We include methods for maximising query sequence length, which gives higher support for ITS1 and ITS2 taxonomic classifications by extending to other fragments of the ITS region and providing taxon-specific local cut-off and confidence scores. We demonstrate our pipeline with a case study using public genomic sequence data for six diverse plant species, including four species within Betula, an ecologically and economically important broadleaved forest tree genus, a shrub and a grass. Our pipeline classified fungi within minutes to a few hours per host individual, with 204 different fungal genera identified at high confidence (≥ 70%). Our pipeline detected and classified pathogenic and endophytic genera known to associate with Betula, and many others with no prior record of association. Our pipeline, leveraging existing sequence data, has several potential applications, including detecting cryptic fungal pathogens and helping characterise the endophytic fungal microbiome, bioprospecting commercially useful fungal species, and determining the plant host range of fungi.
期刊介绍:
Molecular Ecology Resources promotes the creation of comprehensive resources for the scientific community, encompassing computer programs, statistical and molecular advancements, and a diverse array of molecular tools. Serving as a conduit for disseminating these resources, the journal targets a broad audience of researchers in the fields of evolution, ecology, and conservation. Articles in Molecular Ecology Resources are crafted to support investigations tackling significant questions within these disciplines.
In addition to original resource articles, Molecular Ecology Resources features Reviews, Opinions, and Comments relevant to the field. The journal also periodically releases Special Issues focusing on resource development within specific areas.