SGLT2在人血管和心脏中的表达与低度炎症相关,并导致eNOS-NO/ROS失衡

IF 10.2 1区 医学 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS
Ali Mroueh, Paola Algara-Suarez, Walaa Fakih, Dal-Seong Gong, Kensuke Matsushita, Sin-Hee Park, Said Amissi, Cyril Auger, Gilles Kauffenstein, Nicolas Meyer, Patrick Ohlmann, Laurence Jesel, Michael Paul Pieper, Benjamin Marchandot, Olivier Morel, Jean-Philippe Mazzucotelli, Valérie B Schini-Kerth
{"title":"SGLT2在人血管和心脏中的表达与低度炎症相关,并导致eNOS-NO/ROS失衡","authors":"Ali Mroueh, Paola Algara-Suarez, Walaa Fakih, Dal-Seong Gong, Kensuke Matsushita, Sin-Hee Park, Said Amissi, Cyril Auger, Gilles Kauffenstein, Nicolas Meyer, Patrick Ohlmann, Laurence Jesel, Michael Paul Pieper, Benjamin Marchandot, Olivier Morel, Jean-Philippe Mazzucotelli, Valérie B Schini-Kerth","doi":"10.1093/cvr/cvae257","DOIUrl":null,"url":null,"abstract":"Aims Sodium-glucose co-transporter 2 inhibitors (SGLT2i) show a cardioprotective effect in heart failure and myocardial infarction, pathologies often associated with low-grade inflammation. This cross-sectional study aims to investigate whether low-grade inflammation regulates SGLT2 expression and function in human vasculature, heart, and endothelial cells (ECs). Methods and results Human internal thoracic artery (ITA), left ventricle (LV) specimens, and cultured porcine coronary artery ECs were used. Expression of target molecules was assessed using RT-qPCR, western blot analysis, and immunofluorescence staining, and the generation of reactive oxygen species (ROS) and nitric oxide (NO) using fluorescent probes. The function of SGLT2 was investigated using empagliflozin and SGLT1 or 2 siRNA. SGLT2 mRNA and protein levels in ITA and LV specimens were correlated with the level of low-grade inflammation, markers of the angiotensin system, and EC activation. SGLT2 staining was observed in the ITA endothelium and smooth muscle, the coronary microcirculation, and cardiomyocytes. Elevated ROS formation in high SGLT2-expressing specimens was reduced by inhibition of the angiotensin system, SGLT2, and TNF-α. Exposure of ECs to IL-1ß, IL-6, and TNF-α led to an increase in SGLT1 and SGLT2 mRNA and protein expression, up-regulation of components of the angiotensin system, enhanced ROS and decreased NO formation, and activation of NF-κB. The stimulatory effect of TNF-α was prevented by N-acetylcysteine and inhibition of the angiotensin system, SGLT2 but not SGLT1, and NF-κB. Conclusion Low-grade inflammation is closely associated with SGLT2 expression in human vasculature and heart, and this response contributes to a feedforward mechanism with the AT1R/NADPH oxidase pathway to cause eNOS-NO/ROS imbalance.","PeriodicalId":9638,"journal":{"name":"Cardiovascular Research","volume":"38 1","pages":""},"PeriodicalIF":10.2000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SGLT2 expression in human vasculature and heart correlates with low-grade inflammation and causes eNOS-NO/ROS imbalance\",\"authors\":\"Ali Mroueh, Paola Algara-Suarez, Walaa Fakih, Dal-Seong Gong, Kensuke Matsushita, Sin-Hee Park, Said Amissi, Cyril Auger, Gilles Kauffenstein, Nicolas Meyer, Patrick Ohlmann, Laurence Jesel, Michael Paul Pieper, Benjamin Marchandot, Olivier Morel, Jean-Philippe Mazzucotelli, Valérie B Schini-Kerth\",\"doi\":\"10.1093/cvr/cvae257\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Aims Sodium-glucose co-transporter 2 inhibitors (SGLT2i) show a cardioprotective effect in heart failure and myocardial infarction, pathologies often associated with low-grade inflammation. This cross-sectional study aims to investigate whether low-grade inflammation regulates SGLT2 expression and function in human vasculature, heart, and endothelial cells (ECs). Methods and results Human internal thoracic artery (ITA), left ventricle (LV) specimens, and cultured porcine coronary artery ECs were used. Expression of target molecules was assessed using RT-qPCR, western blot analysis, and immunofluorescence staining, and the generation of reactive oxygen species (ROS) and nitric oxide (NO) using fluorescent probes. The function of SGLT2 was investigated using empagliflozin and SGLT1 or 2 siRNA. SGLT2 mRNA and protein levels in ITA and LV specimens were correlated with the level of low-grade inflammation, markers of the angiotensin system, and EC activation. SGLT2 staining was observed in the ITA endothelium and smooth muscle, the coronary microcirculation, and cardiomyocytes. Elevated ROS formation in high SGLT2-expressing specimens was reduced by inhibition of the angiotensin system, SGLT2, and TNF-α. Exposure of ECs to IL-1ß, IL-6, and TNF-α led to an increase in SGLT1 and SGLT2 mRNA and protein expression, up-regulation of components of the angiotensin system, enhanced ROS and decreased NO formation, and activation of NF-κB. The stimulatory effect of TNF-α was prevented by N-acetylcysteine and inhibition of the angiotensin system, SGLT2 but not SGLT1, and NF-κB. Conclusion Low-grade inflammation is closely associated with SGLT2 expression in human vasculature and heart, and this response contributes to a feedforward mechanism with the AT1R/NADPH oxidase pathway to cause eNOS-NO/ROS imbalance.\",\"PeriodicalId\":9638,\"journal\":{\"name\":\"Cardiovascular Research\",\"volume\":\"38 1\",\"pages\":\"\"},\"PeriodicalIF\":10.2000,\"publicationDate\":\"2024-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cardiovascular Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1093/cvr/cvae257\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CARDIAC & CARDIOVASCULAR SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cardiovascular Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/cvr/cvae257","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

目的钠-葡萄糖共转运蛋白2抑制剂(SGLT2i)在心力衰竭和心肌梗死中显示出心脏保护作用,这些疾病通常与低度炎症有关。本横断面研究旨在探讨低级别炎症是否调节SGLT2在人血管、心脏和内皮细胞(ECs)中的表达和功能。方法与结果采用人胸内动脉(ITA)、左心室(LV)和猪冠状动脉(ECs)标本。采用RT-qPCR、western blot和免疫荧光染色检测靶分子的表达,采用荧光探针检测活性氧(ROS)和一氧化氮(NO)的生成。用恩格列净和SGLT1或2sirna研究SGLT2的功能。ITA和LV标本中SGLT2 mRNA和蛋白水平与低级别炎症水平、血管紧张素系统标志物水平和EC激活相关。大鼠ITA内皮、平滑肌、冠状动脉微循环、心肌细胞均可见SGLT2染色。通过抑制血管紧张素系统、SGLT2和TNF-α, SGLT2高表达标本中ROS形成的升高得以降低。内皮细胞暴露于IL-1ß、IL-6和TNF-α导致SGLT1和SGLT2 mRNA和蛋白表达增加,血管紧张素系统成分上调,ROS增强,NO形成减少,NF-κB活化。n -乙酰半胱氨酸和抑制血管紧张素系统、SGLT2而非SGLT1和NF-κB可阻止TNF-α的刺激作用。结论低级别炎症与人血管和心脏中SGLT2的表达密切相关,该反应与AT1R/NADPH氧化酶途径形成前传机制,导致eNOS-NO/ROS失衡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SGLT2 expression in human vasculature and heart correlates with low-grade inflammation and causes eNOS-NO/ROS imbalance
Aims Sodium-glucose co-transporter 2 inhibitors (SGLT2i) show a cardioprotective effect in heart failure and myocardial infarction, pathologies often associated with low-grade inflammation. This cross-sectional study aims to investigate whether low-grade inflammation regulates SGLT2 expression and function in human vasculature, heart, and endothelial cells (ECs). Methods and results Human internal thoracic artery (ITA), left ventricle (LV) specimens, and cultured porcine coronary artery ECs were used. Expression of target molecules was assessed using RT-qPCR, western blot analysis, and immunofluorescence staining, and the generation of reactive oxygen species (ROS) and nitric oxide (NO) using fluorescent probes. The function of SGLT2 was investigated using empagliflozin and SGLT1 or 2 siRNA. SGLT2 mRNA and protein levels in ITA and LV specimens were correlated with the level of low-grade inflammation, markers of the angiotensin system, and EC activation. SGLT2 staining was observed in the ITA endothelium and smooth muscle, the coronary microcirculation, and cardiomyocytes. Elevated ROS formation in high SGLT2-expressing specimens was reduced by inhibition of the angiotensin system, SGLT2, and TNF-α. Exposure of ECs to IL-1ß, IL-6, and TNF-α led to an increase in SGLT1 and SGLT2 mRNA and protein expression, up-regulation of components of the angiotensin system, enhanced ROS and decreased NO formation, and activation of NF-κB. The stimulatory effect of TNF-α was prevented by N-acetylcysteine and inhibition of the angiotensin system, SGLT2 but not SGLT1, and NF-κB. Conclusion Low-grade inflammation is closely associated with SGLT2 expression in human vasculature and heart, and this response contributes to a feedforward mechanism with the AT1R/NADPH oxidase pathway to cause eNOS-NO/ROS imbalance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cardiovascular Research
Cardiovascular Research 医学-心血管系统
CiteScore
21.50
自引率
3.70%
发文量
547
审稿时长
1 months
期刊介绍: Cardiovascular Research Journal Overview: International journal of the European Society of Cardiology Focuses on basic and translational research in cardiology and cardiovascular biology Aims to enhance insight into cardiovascular disease mechanisms and innovation prospects Submission Criteria: Welcomes papers covering molecular, sub-cellular, cellular, organ, and organism levels Accepts clinical proof-of-concept and translational studies Manuscripts expected to provide significant contribution to cardiovascular biology and diseases
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信