{"title":"桃叶提取物绿色合成纳米硒(SeNPs)配方优化及性能稳定性研究。","authors":"Sepideh Shayan, Donya Hajihajikolai, Fateme Ghazale, Fatemeh Gharahdaghigharahtappeh, Amirhossein Faghih, Omid Ahmadi, Gity Behbudi","doi":"10.30498/ijb.2024.413943.3786","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Selenium nanoparticles (SeNPs) are highly sought after in diverse industries for their distinct properties and advantages. SeNPs can be synthesized via several methods, including the use of microwave, bain-marie, autoclave, and heater.</p><p><strong>Objective: </strong>The objective is to optimize the SeNP synthesis formulation, emphasizing stability, concentration, particle size minimization, and uniformity using central composite design.</p><p><strong>Materials and methods: </strong>The method involves autoclave heating at 121 °C under 1.5 bar pressure for 15 minutes. Prunus persica tree leaf extract and Aloe Vera gel serve as a regenerating agent and stabilizer, respectively. Four responses including SeNPs concentration, average particle size, zeta potential, and dispersion index (PDI), were assessed according to the experimental design. The optimal synthesis point was determined and evaluated for SeNP imaging, antioxidant, and antifungal properties.</p><p><strong>Results: </strong>Results indicate that the optimal SeNPs formulation includes 5.73 mL of Prunus persica tree leaf extract, 13.45 mL of sodium selenite salt solution, and 0.80 mL of Aloe Vera gel.</p><p><strong>Conclusion: </strong>The optimal formulation of selenium nanoparticles (SeNPs) achieved in this study, using Prunus persica tree leaf extract as a reducing agent and Aloe Vera gel as a stabilizer, demonstrates superior properties including high stability, a small average particle size, and a favorable zeta potential. These characteristics make the SeNPs well-suited for applications requiring enhanced antioxidant and antifungal activities. The findings underscore the importance of optimizing synthesis parameters to maximize the functional properties of SeNPs.</p>","PeriodicalId":14492,"journal":{"name":"Iranian Journal of Biotechnology","volume":"22 3","pages":"e3786"},"PeriodicalIF":1.6000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11682526/pdf/","citationCount":"0","resultStr":"{\"title\":\"Optimization of Green Synthesis Formulation of Selenium Nanoparticles (SeNPs) Using Peach Tree Leaf Extract and Investigating its Properties and Stability.\",\"authors\":\"Sepideh Shayan, Donya Hajihajikolai, Fateme Ghazale, Fatemeh Gharahdaghigharahtappeh, Amirhossein Faghih, Omid Ahmadi, Gity Behbudi\",\"doi\":\"10.30498/ijb.2024.413943.3786\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Selenium nanoparticles (SeNPs) are highly sought after in diverse industries for their distinct properties and advantages. SeNPs can be synthesized via several methods, including the use of microwave, bain-marie, autoclave, and heater.</p><p><strong>Objective: </strong>The objective is to optimize the SeNP synthesis formulation, emphasizing stability, concentration, particle size minimization, and uniformity using central composite design.</p><p><strong>Materials and methods: </strong>The method involves autoclave heating at 121 °C under 1.5 bar pressure for 15 minutes. Prunus persica tree leaf extract and Aloe Vera gel serve as a regenerating agent and stabilizer, respectively. Four responses including SeNPs concentration, average particle size, zeta potential, and dispersion index (PDI), were assessed according to the experimental design. The optimal synthesis point was determined and evaluated for SeNP imaging, antioxidant, and antifungal properties.</p><p><strong>Results: </strong>Results indicate that the optimal SeNPs formulation includes 5.73 mL of Prunus persica tree leaf extract, 13.45 mL of sodium selenite salt solution, and 0.80 mL of Aloe Vera gel.</p><p><strong>Conclusion: </strong>The optimal formulation of selenium nanoparticles (SeNPs) achieved in this study, using Prunus persica tree leaf extract as a reducing agent and Aloe Vera gel as a stabilizer, demonstrates superior properties including high stability, a small average particle size, and a favorable zeta potential. These characteristics make the SeNPs well-suited for applications requiring enhanced antioxidant and antifungal activities. The findings underscore the importance of optimizing synthesis parameters to maximize the functional properties of SeNPs.</p>\",\"PeriodicalId\":14492,\"journal\":{\"name\":\"Iranian Journal of Biotechnology\",\"volume\":\"22 3\",\"pages\":\"e3786\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11682526/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Iranian Journal of Biotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.30498/ijb.2024.413943.3786\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iranian Journal of Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.30498/ijb.2024.413943.3786","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Optimization of Green Synthesis Formulation of Selenium Nanoparticles (SeNPs) Using Peach Tree Leaf Extract and Investigating its Properties and Stability.
Background: Selenium nanoparticles (SeNPs) are highly sought after in diverse industries for their distinct properties and advantages. SeNPs can be synthesized via several methods, including the use of microwave, bain-marie, autoclave, and heater.
Objective: The objective is to optimize the SeNP synthesis formulation, emphasizing stability, concentration, particle size minimization, and uniformity using central composite design.
Materials and methods: The method involves autoclave heating at 121 °C under 1.5 bar pressure for 15 minutes. Prunus persica tree leaf extract and Aloe Vera gel serve as a regenerating agent and stabilizer, respectively. Four responses including SeNPs concentration, average particle size, zeta potential, and dispersion index (PDI), were assessed according to the experimental design. The optimal synthesis point was determined and evaluated for SeNP imaging, antioxidant, and antifungal properties.
Results: Results indicate that the optimal SeNPs formulation includes 5.73 mL of Prunus persica tree leaf extract, 13.45 mL of sodium selenite salt solution, and 0.80 mL of Aloe Vera gel.
Conclusion: The optimal formulation of selenium nanoparticles (SeNPs) achieved in this study, using Prunus persica tree leaf extract as a reducing agent and Aloe Vera gel as a stabilizer, demonstrates superior properties including high stability, a small average particle size, and a favorable zeta potential. These characteristics make the SeNPs well-suited for applications requiring enhanced antioxidant and antifungal activities. The findings underscore the importance of optimizing synthesis parameters to maximize the functional properties of SeNPs.
期刊介绍:
Iranian Journal of Biotechnology (IJB) is published quarterly by the National Institute of Genetic Engineering and Biotechnology. IJB publishes original scientific research papers in the broad area of Biotechnology such as, Agriculture, Animal and Marine Sciences, Basic Sciences, Bioinformatics, Biosafety and Bioethics, Environment, Industry and Mining and Medical Sciences.