Sen-lin Lu , Zhi-hao Pan , Zhi Cui , Ji-li Wang , Jian-lin Yang , Ya-feng Lv , Chun-yu Cao , Xiao-fei Huang
{"title":"aav2介导的ABD-FGF21基因传递在2型糖尿病小鼠中产生持续的降糖作用。","authors":"Sen-lin Lu , Zhi-hao Pan , Zhi Cui , Ji-li Wang , Jian-lin Yang , Ya-feng Lv , Chun-yu Cao , Xiao-fei Huang","doi":"10.1016/j.lfs.2024.123344","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Fibroblast Growth Factor 21 (FGF21) is a naturally occurring peptide hormone involved in the regulation of glycolipid metabolism, and it shows promise as a potential treatment for type 2 diabetes mellitus (T2DM). However, the short half-life and poor pharmacokinetics of native FGF21 limit its efficacy in reducing hyperglycemia in vivo. Therefore, maintaining stable and sustained blood concentrations of FGF21 is crucial for its role as an effective regulator of glycolipid metabolism in vivo. In this study, we developed an AAV2-mediated gene delivery system incorporating an Albumin-binding domain (ABD) fused to FGF21, and we evaluated its effects in a type 2 diabetic mouse model.</div></div><div><h3>Methods</h3><div>The plasmids pAAV-FGF21-Luciferase, pHelper, and the capsid plasmid were transfected into HEK293T cells to generate recombinant AAV (rAAV) virus. A type 2 diabetes mellitus (T2DM) mouse model was established for evaluation. The rAAV was administered via tail vein injection into the mice. The effects of rAAV injection on various parameters were assessed using commercial kits. Histological changes in the liver and adipose tissue of T2DM mice were examined using hematoxylin and eosin (H&E) staining.</div></div><div><h3>Results</h3><div>The data showed that the inclusion of ABD significantly prolonged the half-life of FGF21 in the serum of mice. Additionally, AAV2-mediated delivery of ABD-FGF21 to the liver resulted in sustained gene expression and a significant increase in circulating FGF21 levels in mice. Treatment with AAV2-ABD-FGF21 led to several benefits, including reduced fasting glucose, improved insulin sensitivity, decreased triglyceride and total cholesterol levels, and improved body weight in T2DM mice. Furthermore, serum analysis and histological examination showed no significant liver damage at the study endpoint after seven weeks.</div></div><div><h3>Conclusion</h3><div>In conclusion, we have developed a novel strategy for producing long-acting FGF21 using the AAV vector, and AAV2-ABD-FGF21 shows promise as a therapeutic approach for type 2 diabetes mellitus and other glycolipid metabolic disorders.</div></div>","PeriodicalId":18122,"journal":{"name":"Life sciences","volume":"362 ","pages":"Article 123344"},"PeriodicalIF":5.2000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"AAV2-mediated ABD-FGF21 gene delivery produces a sustained anti-hyperglycemic effect in type 2 diabetic mouse\",\"authors\":\"Sen-lin Lu , Zhi-hao Pan , Zhi Cui , Ji-li Wang , Jian-lin Yang , Ya-feng Lv , Chun-yu Cao , Xiao-fei Huang\",\"doi\":\"10.1016/j.lfs.2024.123344\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><div>Fibroblast Growth Factor 21 (FGF21) is a naturally occurring peptide hormone involved in the regulation of glycolipid metabolism, and it shows promise as a potential treatment for type 2 diabetes mellitus (T2DM). However, the short half-life and poor pharmacokinetics of native FGF21 limit its efficacy in reducing hyperglycemia in vivo. Therefore, maintaining stable and sustained blood concentrations of FGF21 is crucial for its role as an effective regulator of glycolipid metabolism in vivo. In this study, we developed an AAV2-mediated gene delivery system incorporating an Albumin-binding domain (ABD) fused to FGF21, and we evaluated its effects in a type 2 diabetic mouse model.</div></div><div><h3>Methods</h3><div>The plasmids pAAV-FGF21-Luciferase, pHelper, and the capsid plasmid were transfected into HEK293T cells to generate recombinant AAV (rAAV) virus. A type 2 diabetes mellitus (T2DM) mouse model was established for evaluation. The rAAV was administered via tail vein injection into the mice. The effects of rAAV injection on various parameters were assessed using commercial kits. Histological changes in the liver and adipose tissue of T2DM mice were examined using hematoxylin and eosin (H&E) staining.</div></div><div><h3>Results</h3><div>The data showed that the inclusion of ABD significantly prolonged the half-life of FGF21 in the serum of mice. Additionally, AAV2-mediated delivery of ABD-FGF21 to the liver resulted in sustained gene expression and a significant increase in circulating FGF21 levels in mice. Treatment with AAV2-ABD-FGF21 led to several benefits, including reduced fasting glucose, improved insulin sensitivity, decreased triglyceride and total cholesterol levels, and improved body weight in T2DM mice. Furthermore, serum analysis and histological examination showed no significant liver damage at the study endpoint after seven weeks.</div></div><div><h3>Conclusion</h3><div>In conclusion, we have developed a novel strategy for producing long-acting FGF21 using the AAV vector, and AAV2-ABD-FGF21 shows promise as a therapeutic approach for type 2 diabetes mellitus and other glycolipid metabolic disorders.</div></div>\",\"PeriodicalId\":18122,\"journal\":{\"name\":\"Life sciences\",\"volume\":\"362 \",\"pages\":\"Article 123344\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Life sciences\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0024320524009342\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Life sciences","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0024320524009342","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
AAV2-mediated ABD-FGF21 gene delivery produces a sustained anti-hyperglycemic effect in type 2 diabetic mouse
Background
Fibroblast Growth Factor 21 (FGF21) is a naturally occurring peptide hormone involved in the regulation of glycolipid metabolism, and it shows promise as a potential treatment for type 2 diabetes mellitus (T2DM). However, the short half-life and poor pharmacokinetics of native FGF21 limit its efficacy in reducing hyperglycemia in vivo. Therefore, maintaining stable and sustained blood concentrations of FGF21 is crucial for its role as an effective regulator of glycolipid metabolism in vivo. In this study, we developed an AAV2-mediated gene delivery system incorporating an Albumin-binding domain (ABD) fused to FGF21, and we evaluated its effects in a type 2 diabetic mouse model.
Methods
The plasmids pAAV-FGF21-Luciferase, pHelper, and the capsid plasmid were transfected into HEK293T cells to generate recombinant AAV (rAAV) virus. A type 2 diabetes mellitus (T2DM) mouse model was established for evaluation. The rAAV was administered via tail vein injection into the mice. The effects of rAAV injection on various parameters were assessed using commercial kits. Histological changes in the liver and adipose tissue of T2DM mice were examined using hematoxylin and eosin (H&E) staining.
Results
The data showed that the inclusion of ABD significantly prolonged the half-life of FGF21 in the serum of mice. Additionally, AAV2-mediated delivery of ABD-FGF21 to the liver resulted in sustained gene expression and a significant increase in circulating FGF21 levels in mice. Treatment with AAV2-ABD-FGF21 led to several benefits, including reduced fasting glucose, improved insulin sensitivity, decreased triglyceride and total cholesterol levels, and improved body weight in T2DM mice. Furthermore, serum analysis and histological examination showed no significant liver damage at the study endpoint after seven weeks.
Conclusion
In conclusion, we have developed a novel strategy for producing long-acting FGF21 using the AAV vector, and AAV2-ABD-FGF21 shows promise as a therapeutic approach for type 2 diabetes mellitus and other glycolipid metabolic disorders.
期刊介绍:
Life Sciences is an international journal publishing articles that emphasize the molecular, cellular, and functional basis of therapy. The journal emphasizes the understanding of mechanism that is relevant to all aspects of human disease and translation to patients. All articles are rigorously reviewed.
The Journal favors publication of full-length papers where modern scientific technologies are used to explain molecular, cellular and physiological mechanisms. Articles that merely report observations are rarely accepted. Recommendations from the Declaration of Helsinki or NIH guidelines for care and use of laboratory animals must be adhered to. Articles should be written at a level accessible to readers who are non-specialists in the topic of the article themselves, but who are interested in the research. The Journal welcomes reviews on topics of wide interest to investigators in the life sciences. We particularly encourage submission of brief, focused reviews containing high-quality artwork and require the use of mechanistic summary diagrams.