Besov-Morrey空间中分数阶随机hall -磁流体动力学系统的全局适定性和解析性

IF 0.9 Q2 MATHEMATICS
Hassan Khaider, Achraf Azanzal, Abderrahmane Raji
{"title":"Besov-Morrey空间中分数阶随机hall -磁流体动力学系统的全局适定性和解析性","authors":"Hassan Khaider,&nbsp;Achraf Azanzal,&nbsp;Abderrahmane Raji","doi":"10.1007/s40065-024-00488-7","DOIUrl":null,"url":null,"abstract":"<div><p>This paper studies the existence and uniqueness of solution for the fractional Hall-magnetohydrodynamics system (HMH) and with two stochastic terms (SHMH). Based on the theory of Besov–Morrey spaces and the contraction principle, we will demonstrate tow main result. The first result shows the existence, uniqueness and the analyticity of solution for (HMH) in Besov–Morrey spaces <span>\\(\\textrm{N}_{p,\\lambda }^{s}\\)</span>. The second result prove the existence and uniqueness of solution for (SHMH) in <span>\\({\\mathcal {L}}_0^1\\big (\\Omega \\times (0,T),{\\mathcal {P}};{\\mathcal {M}}_p^\\lambda \\big ) \\cap \\textrm{N}_{p,\\lambda }^{s}\\)</span>.</p></div>","PeriodicalId":54135,"journal":{"name":"Arabian Journal of Mathematics","volume":"13 3","pages":"583 - 594"},"PeriodicalIF":0.9000,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40065-024-00488-7.pdf","citationCount":"0","resultStr":"{\"title\":\"Global well-posedness and analyticity for the fractional stochastic Hall-magnetohydrodynamics system in the Besov–Morrey spaces\",\"authors\":\"Hassan Khaider,&nbsp;Achraf Azanzal,&nbsp;Abderrahmane Raji\",\"doi\":\"10.1007/s40065-024-00488-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper studies the existence and uniqueness of solution for the fractional Hall-magnetohydrodynamics system (HMH) and with two stochastic terms (SHMH). Based on the theory of Besov–Morrey spaces and the contraction principle, we will demonstrate tow main result. The first result shows the existence, uniqueness and the analyticity of solution for (HMH) in Besov–Morrey spaces <span>\\\\(\\\\textrm{N}_{p,\\\\lambda }^{s}\\\\)</span>. The second result prove the existence and uniqueness of solution for (SHMH) in <span>\\\\({\\\\mathcal {L}}_0^1\\\\big (\\\\Omega \\\\times (0,T),{\\\\mathcal {P}};{\\\\mathcal {M}}_p^\\\\lambda \\\\big ) \\\\cap \\\\textrm{N}_{p,\\\\lambda }^{s}\\\\)</span>.</p></div>\",\"PeriodicalId\":54135,\"journal\":{\"name\":\"Arabian Journal of Mathematics\",\"volume\":\"13 3\",\"pages\":\"583 - 594\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s40065-024-00488-7.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Arabian Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40065-024-00488-7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Arabian Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s40065-024-00488-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

研究了两随机项分数阶霍尔-磁流体动力学系统解的存在唯一性。基于Besov-Morrey空间理论和收缩原理,我们将证明两个主要结果。第一个结果证明了(HMH)在Besov-Morrey空间\(\textrm{N}_{p,\lambda }^{s}\)中解的存在唯一性和解析性。第二个结果证明了\({\mathcal {L}}_0^1\big (\Omega \times (0,T),{\mathcal {P}};{\mathcal {M}}_p^\lambda \big ) \cap \textrm{N}_{p,\lambda }^{s}\)中(SHMH)解的存在唯一性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Global well-posedness and analyticity for the fractional stochastic Hall-magnetohydrodynamics system in the Besov–Morrey spaces

This paper studies the existence and uniqueness of solution for the fractional Hall-magnetohydrodynamics system (HMH) and with two stochastic terms (SHMH). Based on the theory of Besov–Morrey spaces and the contraction principle, we will demonstrate tow main result. The first result shows the existence, uniqueness and the analyticity of solution for (HMH) in Besov–Morrey spaces \(\textrm{N}_{p,\lambda }^{s}\). The second result prove the existence and uniqueness of solution for (SHMH) in \({\mathcal {L}}_0^1\big (\Omega \times (0,T),{\mathcal {P}};{\mathcal {M}}_p^\lambda \big ) \cap \textrm{N}_{p,\lambda }^{s}\).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.20
自引率
8.30%
发文量
48
审稿时长
13 weeks
期刊介绍: The Arabian Journal of Mathematics is a quarterly, peer-reviewed open access journal published under the SpringerOpen brand, covering all mainstream branches of pure and applied mathematics. Owned by King Fahd University of Petroleum and Minerals, AJM publishes carefully refereed research papers in all main-stream branches of pure and applied mathematics. Survey papers may be submitted for publication by invitation only.To be published in AJM, a paper should be a significant contribution to the mathematics literature, well-written, and of interest to a wide audience. All manuscripts will undergo a strict refereeing process; acceptance for publication is based on two positive reviews from experts in the field.Submission of a manuscript acknowledges that the manuscript is original and is not, in whole or in part, published or submitted for publication elsewhere. A copyright agreement is required before the publication of the paper.Manuscripts must be written in English. It is the author''s responsibility to make sure her/his manuscript is written in clear, unambiguous and grammatically correct language.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信