Lucas Schreiter;Andreas Brack;Benjamin Männel;Harald Schuh;Daniel Arnold;Adrian Jäggi
{"title":"利用低轨道卫星获得的GNSS倾斜TEC对电离层和等离子层进行成像","authors":"Lucas Schreiter;Andreas Brack;Benjamin Männel;Harald Schuh;Daniel Arnold;Adrian Jäggi","doi":"10.1029/2024RS008058","DOIUrl":null,"url":null,"abstract":"Satellites with dual-frequency Global Navigation Satellite Systems (GNSS) receivers can measure integrated electron density, known as slant Total Electron Content (sTEC), between the receiver and transmitter. Precise relative variations of sTEC are achievable using phase measurements on L1 and L2 frequencies, yielding an accuracy of around 0.1 TECU or better. However, CubeSats like Spire LEMUR, with simpler setups (e.g., patch antennas) and code noise in the order of several meters, face limitations in accuracy. Their precision, determined by phase observations, remains in the 0.1–0.3 TECU range. With a substantial number of observations and comprehensive coverage of lines of sight between Low Earth Orbit (LEO) and GNSS satellites, global electron density can be reconstructed from sTEC measurements. Utilizing 27 satellites from various missions, including Swarm, Gravity Recovery And Climate Experiment Follow-On, Jason-3, Sentinel 1/2/3, COSMIC-2, and Spire CubeSats, a cubic B-spline expansion in magnetic latitude, magnetic local time, and altitude is employed to model the logarithmic electron density. Hourly snapshots of the three-dimensional electron density are generated, adjusting the model parameters through non-linear least squares based on sTEC observations. Results demonstrate that including Spire significantly enhances estimates, showcasing exceptional agreement with in situ observations from Swarm and Defense Meteorological Satellite Program LEO satellites. The model outperforms contemporary climatological models, such as International Reference Ionosphere (IRI)-2020 and the neural network-based NET model. Validation efforts include comparisons with ground-based sTEC measurements, space-based vertical TEC from Jason-3 altimetry, and global TEC maps from the Center for Orbit Determination in Europe and the German Research Center for Geosciences (GFZ).","PeriodicalId":49638,"journal":{"name":"Radio Science","volume":"59 12","pages":"1-19"},"PeriodicalIF":1.6000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Imaging of the ionosphere and plasmasphere using GNSS slant TEC obtained from LEO satellites\",\"authors\":\"Lucas Schreiter;Andreas Brack;Benjamin Männel;Harald Schuh;Daniel Arnold;Adrian Jäggi\",\"doi\":\"10.1029/2024RS008058\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Satellites with dual-frequency Global Navigation Satellite Systems (GNSS) receivers can measure integrated electron density, known as slant Total Electron Content (sTEC), between the receiver and transmitter. Precise relative variations of sTEC are achievable using phase measurements on L1 and L2 frequencies, yielding an accuracy of around 0.1 TECU or better. However, CubeSats like Spire LEMUR, with simpler setups (e.g., patch antennas) and code noise in the order of several meters, face limitations in accuracy. Their precision, determined by phase observations, remains in the 0.1–0.3 TECU range. With a substantial number of observations and comprehensive coverage of lines of sight between Low Earth Orbit (LEO) and GNSS satellites, global electron density can be reconstructed from sTEC measurements. Utilizing 27 satellites from various missions, including Swarm, Gravity Recovery And Climate Experiment Follow-On, Jason-3, Sentinel 1/2/3, COSMIC-2, and Spire CubeSats, a cubic B-spline expansion in magnetic latitude, magnetic local time, and altitude is employed to model the logarithmic electron density. Hourly snapshots of the three-dimensional electron density are generated, adjusting the model parameters through non-linear least squares based on sTEC observations. Results demonstrate that including Spire significantly enhances estimates, showcasing exceptional agreement with in situ observations from Swarm and Defense Meteorological Satellite Program LEO satellites. The model outperforms contemporary climatological models, such as International Reference Ionosphere (IRI)-2020 and the neural network-based NET model. Validation efforts include comparisons with ground-based sTEC measurements, space-based vertical TEC from Jason-3 altimetry, and global TEC maps from the Center for Orbit Determination in Europe and the German Research Center for Geosciences (GFZ).\",\"PeriodicalId\":49638,\"journal\":{\"name\":\"Radio Science\",\"volume\":\"59 12\",\"pages\":\"1-19\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Radio Science\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10819310/\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radio Science","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10819310/","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
Imaging of the ionosphere and plasmasphere using GNSS slant TEC obtained from LEO satellites
Satellites with dual-frequency Global Navigation Satellite Systems (GNSS) receivers can measure integrated electron density, known as slant Total Electron Content (sTEC), between the receiver and transmitter. Precise relative variations of sTEC are achievable using phase measurements on L1 and L2 frequencies, yielding an accuracy of around 0.1 TECU or better. However, CubeSats like Spire LEMUR, with simpler setups (e.g., patch antennas) and code noise in the order of several meters, face limitations in accuracy. Their precision, determined by phase observations, remains in the 0.1–0.3 TECU range. With a substantial number of observations and comprehensive coverage of lines of sight between Low Earth Orbit (LEO) and GNSS satellites, global electron density can be reconstructed from sTEC measurements. Utilizing 27 satellites from various missions, including Swarm, Gravity Recovery And Climate Experiment Follow-On, Jason-3, Sentinel 1/2/3, COSMIC-2, and Spire CubeSats, a cubic B-spline expansion in magnetic latitude, magnetic local time, and altitude is employed to model the logarithmic electron density. Hourly snapshots of the three-dimensional electron density are generated, adjusting the model parameters through non-linear least squares based on sTEC observations. Results demonstrate that including Spire significantly enhances estimates, showcasing exceptional agreement with in situ observations from Swarm and Defense Meteorological Satellite Program LEO satellites. The model outperforms contemporary climatological models, such as International Reference Ionosphere (IRI)-2020 and the neural network-based NET model. Validation efforts include comparisons with ground-based sTEC measurements, space-based vertical TEC from Jason-3 altimetry, and global TEC maps from the Center for Orbit Determination in Europe and the German Research Center for Geosciences (GFZ).
期刊介绍:
Radio Science (RDS) publishes original scientific contributions on radio-frequency electromagnetic-propagation and its applications. Contributions covering measurement, modelling, prediction and forecasting techniques pertinent to fields and waves - including antennas, signals and systems, the terrestrial and space environment and radio propagation problems in radio astronomy - are welcome. Contributions may address propagation through, interaction with, and remote sensing of structures, geophysical media, plasmas, and materials, as well as the application of radio frequency electromagnetic techniques to remote sensing of the Earth and other bodies in the solar system.