{"title":"面向QoS预测的上下文感知边缘云协作框架","authors":"Yong Cheng;Weihao Cao;Hao Fang;Shaobo Zang","doi":"10.26599/TST.2024.9010027","DOIUrl":null,"url":null,"abstract":"The rapid growth of online services has led to the emergence of many with similar functionalities, making it necessary to predict their non-functional attributes, namely quality of service (QoS). Traditional QoS prediction approaches require users to upload their QoS data to the cloud for centralized training, leading to high user data upload latency. With the help of edge computing, users can upload data to edge servers (ESs) adjacent to them for training, reducing the upload latency. However, shallow models like matrix factorization (MF) are still used, which cannot sufficiently extract context features, resulting in low prediction accuracy. In this paper, we propose a context-aware edge-cloud collaboration framework for QoS prediction, named CQEC. Specially, to reduce the users upload latency, a distributed model training algorithm is designed with the collaboration of ESs and cloud. Furthermore, a context-aware prediction model based on convolutional neural network (CNN) and integrating attention mechanism is proposed to improve the performance. Experiments based on real-world dataset demonstrate that COEC outperforms the baselines.","PeriodicalId":48690,"journal":{"name":"Tsinghua Science and Technology","volume":"30 3","pages":"1201-1214"},"PeriodicalIF":6.6000,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10817722","citationCount":"0","resultStr":"{\"title\":\"A Context-Aware Edge-Cloud Collaboration Framework for QoS Prediction\",\"authors\":\"Yong Cheng;Weihao Cao;Hao Fang;Shaobo Zang\",\"doi\":\"10.26599/TST.2024.9010027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The rapid growth of online services has led to the emergence of many with similar functionalities, making it necessary to predict their non-functional attributes, namely quality of service (QoS). Traditional QoS prediction approaches require users to upload their QoS data to the cloud for centralized training, leading to high user data upload latency. With the help of edge computing, users can upload data to edge servers (ESs) adjacent to them for training, reducing the upload latency. However, shallow models like matrix factorization (MF) are still used, which cannot sufficiently extract context features, resulting in low prediction accuracy. In this paper, we propose a context-aware edge-cloud collaboration framework for QoS prediction, named CQEC. Specially, to reduce the users upload latency, a distributed model training algorithm is designed with the collaboration of ESs and cloud. Furthermore, a context-aware prediction model based on convolutional neural network (CNN) and integrating attention mechanism is proposed to improve the performance. Experiments based on real-world dataset demonstrate that COEC outperforms the baselines.\",\"PeriodicalId\":48690,\"journal\":{\"name\":\"Tsinghua Science and Technology\",\"volume\":\"30 3\",\"pages\":\"1201-1214\"},\"PeriodicalIF\":6.6000,\"publicationDate\":\"2024-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10817722\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tsinghua Science and Technology\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10817722/\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Multidisciplinary\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tsinghua Science and Technology","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10817722/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Multidisciplinary","Score":null,"Total":0}
A Context-Aware Edge-Cloud Collaboration Framework for QoS Prediction
The rapid growth of online services has led to the emergence of many with similar functionalities, making it necessary to predict their non-functional attributes, namely quality of service (QoS). Traditional QoS prediction approaches require users to upload their QoS data to the cloud for centralized training, leading to high user data upload latency. With the help of edge computing, users can upload data to edge servers (ESs) adjacent to them for training, reducing the upload latency. However, shallow models like matrix factorization (MF) are still used, which cannot sufficiently extract context features, resulting in low prediction accuracy. In this paper, we propose a context-aware edge-cloud collaboration framework for QoS prediction, named CQEC. Specially, to reduce the users upload latency, a distributed model training algorithm is designed with the collaboration of ESs and cloud. Furthermore, a context-aware prediction model based on convolutional neural network (CNN) and integrating attention mechanism is proposed to improve the performance. Experiments based on real-world dataset demonstrate that COEC outperforms the baselines.
期刊介绍:
Tsinghua Science and Technology (Tsinghua Sci Technol) started publication in 1996. It is an international academic journal sponsored by Tsinghua University and is published bimonthly. This journal aims at presenting the up-to-date scientific achievements in computer science, electronic engineering, and other IT fields. Contributions all over the world are welcome.