MDGCN-Lt:基于深度GCN的稀疏异构数据公平Web API分类

IF 6.6 1区 计算机科学 Q1 Multidisciplinary
Boyuan Yan;Yankun Zhang;Wenwen Gong;Haoyang Wan;Wenwei Wang;Weiyi Zhong;Caixia Bu
{"title":"MDGCN-Lt:基于深度GCN的稀疏异构数据公平Web API分类","authors":"Boyuan Yan;Yankun Zhang;Wenwen Gong;Haoyang Wan;Wenwei Wang;Weiyi Zhong;Caixia Bu","doi":"10.26599/TST.2024.9010026","DOIUrl":null,"url":null,"abstract":"Developers integrate web Application Programming Interfaces (APIs) into edge applications, enabling data expansion to the edge computing area for comprehensive coverage of devices in that region. To develop edge applications, developers search API categories to select APIs that meet specific functionalities. Therefore, the accurate classification of APIs becomes critically important. However, existing approaches, as evident on platforms like programableweb.com, face significant challenges. Firstly, sparsity in API data reduces classification accuracy in works focusing on single-dimensional API information. Secondly, the multidimensional and heterogeneous structure of web APIs adds complexity to data mining tasks, requiring sophisticated techniques for effective integration and analysis of diverse data aspects. Lastly, the long-tailed distribution of API data introduces biases, compromising the fairness of classification efforts. Addressing these challenges, we propose MDGCN-Lt, an API classification approach offering flexibility in using multi-dimensional heterogeneous data. It tackles data sparsity through deep graph convolutional networks, exploring high-order feature interactions among API nodes. MDGCN-Lt employs a loss function with logit adjustment, enhancing efficiency in handling long-tail data scenarios. Empirical results affirm our approach's superiority over existing methods.","PeriodicalId":48690,"journal":{"name":"Tsinghua Science and Technology","volume":"30 3","pages":"1294-1314"},"PeriodicalIF":6.6000,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10817770","citationCount":"0","resultStr":"{\"title\":\"MDGCN-Lt: Fair Web API Classification with Sparse and Heterogeneous Data Based on Deep GCN\",\"authors\":\"Boyuan Yan;Yankun Zhang;Wenwen Gong;Haoyang Wan;Wenwei Wang;Weiyi Zhong;Caixia Bu\",\"doi\":\"10.26599/TST.2024.9010026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Developers integrate web Application Programming Interfaces (APIs) into edge applications, enabling data expansion to the edge computing area for comprehensive coverage of devices in that region. To develop edge applications, developers search API categories to select APIs that meet specific functionalities. Therefore, the accurate classification of APIs becomes critically important. However, existing approaches, as evident on platforms like programableweb.com, face significant challenges. Firstly, sparsity in API data reduces classification accuracy in works focusing on single-dimensional API information. Secondly, the multidimensional and heterogeneous structure of web APIs adds complexity to data mining tasks, requiring sophisticated techniques for effective integration and analysis of diverse data aspects. Lastly, the long-tailed distribution of API data introduces biases, compromising the fairness of classification efforts. Addressing these challenges, we propose MDGCN-Lt, an API classification approach offering flexibility in using multi-dimensional heterogeneous data. It tackles data sparsity through deep graph convolutional networks, exploring high-order feature interactions among API nodes. MDGCN-Lt employs a loss function with logit adjustment, enhancing efficiency in handling long-tail data scenarios. Empirical results affirm our approach's superiority over existing methods.\",\"PeriodicalId\":48690,\"journal\":{\"name\":\"Tsinghua Science and Technology\",\"volume\":\"30 3\",\"pages\":\"1294-1314\"},\"PeriodicalIF\":6.6000,\"publicationDate\":\"2024-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10817770\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tsinghua Science and Technology\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10817770/\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Multidisciplinary\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tsinghua Science and Technology","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10817770/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Multidisciplinary","Score":null,"Total":0}
引用次数: 0

摘要

开发人员将web应用程序编程接口(api)集成到边缘应用程序中,使数据扩展到边缘计算区域,从而全面覆盖该区域的设备。为了开发边缘应用程序,开发人员搜索API类别以选择满足特定功能的API。因此,原料药的准确分类变得至关重要。然而,现有的方法,如programableweb.com等平台所示,面临着巨大的挑战。首先,API数据的稀疏性降低了关注一维API信息的工作的分类精度。其次,web api的多维和异构结构增加了数据挖掘任务的复杂性,需要复杂的技术来有效集成和分析不同的数据方面。最后,API数据的长尾分布引入了偏差,损害了分类工作的公平性。为了应对这些挑战,我们提出了MDGCN-Lt,这是一种API分类方法,可以灵活地使用多维异构数据。它通过深度图卷积网络解决数据稀疏问题,探索API节点之间的高阶特征交互。MDGCN-Lt采用logit调整的损失函数,提高了处理长尾数据场景的效率。实证结果肯定了我们的方法优于现有方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
MDGCN-Lt: Fair Web API Classification with Sparse and Heterogeneous Data Based on Deep GCN
Developers integrate web Application Programming Interfaces (APIs) into edge applications, enabling data expansion to the edge computing area for comprehensive coverage of devices in that region. To develop edge applications, developers search API categories to select APIs that meet specific functionalities. Therefore, the accurate classification of APIs becomes critically important. However, existing approaches, as evident on platforms like programableweb.com, face significant challenges. Firstly, sparsity in API data reduces classification accuracy in works focusing on single-dimensional API information. Secondly, the multidimensional and heterogeneous structure of web APIs adds complexity to data mining tasks, requiring sophisticated techniques for effective integration and analysis of diverse data aspects. Lastly, the long-tailed distribution of API data introduces biases, compromising the fairness of classification efforts. Addressing these challenges, we propose MDGCN-Lt, an API classification approach offering flexibility in using multi-dimensional heterogeneous data. It tackles data sparsity through deep graph convolutional networks, exploring high-order feature interactions among API nodes. MDGCN-Lt employs a loss function with logit adjustment, enhancing efficiency in handling long-tail data scenarios. Empirical results affirm our approach's superiority over existing methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Tsinghua Science and Technology
Tsinghua Science and Technology COMPUTER SCIENCE, INFORMATION SYSTEMSCOMPU-COMPUTER SCIENCE, SOFTWARE ENGINEERING
CiteScore
10.20
自引率
10.60%
发文量
2340
期刊介绍: Tsinghua Science and Technology (Tsinghua Sci Technol) started publication in 1996. It is an international academic journal sponsored by Tsinghua University and is published bimonthly. This journal aims at presenting the up-to-date scientific achievements in computer science, electronic engineering, and other IT fields. Contributions all over the world are welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信