无桥SEPIC PFC转换器低电压EV应用与减少传感器计数

G K Naveen Kumar;Arun Kumar Verma;Sandeep N
{"title":"无桥SEPIC PFC转换器低电压EV应用与减少传感器计数","authors":"G K Naveen Kumar;Arun Kumar Verma;Sandeep N","doi":"10.1109/JESTIE.2024.3471339","DOIUrl":null,"url":null,"abstract":"This article proposes a single-phase bridgeless single-ended primary inductance-based power factor correction (PFC) converter that can function as a front-end converter for on-board low-voltage electric vehicle charging applications. The ability to inherently achieve the PFC in discontinuous inductor current mode is utilized in the proposed converter, thereby, the need for input voltage/current sensing is completely eliminated. Further, the structure of the proposed converter reduces the gate driver complexity owing to the common ground shared by all of the active switches which further adds to the cost effectiveness. The experimental results from a 1 kW prototype are presented to validate feasibility under steady state and dynamic conditions for wide output and input voltage ranges.","PeriodicalId":100620,"journal":{"name":"IEEE Journal of Emerging and Selected Topics in Industrial Electronics","volume":"6 1","pages":"3-8"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bridgeless SEPIC PFC Converter for Low-Voltage EV Applications With Reduced Sensor Count\",\"authors\":\"G K Naveen Kumar;Arun Kumar Verma;Sandeep N\",\"doi\":\"10.1109/JESTIE.2024.3471339\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article proposes a single-phase bridgeless single-ended primary inductance-based power factor correction (PFC) converter that can function as a front-end converter for on-board low-voltage electric vehicle charging applications. The ability to inherently achieve the PFC in discontinuous inductor current mode is utilized in the proposed converter, thereby, the need for input voltage/current sensing is completely eliminated. Further, the structure of the proposed converter reduces the gate driver complexity owing to the common ground shared by all of the active switches which further adds to the cost effectiveness. The experimental results from a 1 kW prototype are presented to validate feasibility under steady state and dynamic conditions for wide output and input voltage ranges.\",\"PeriodicalId\":100620,\"journal\":{\"name\":\"IEEE Journal of Emerging and Selected Topics in Industrial Electronics\",\"volume\":\"6 1\",\"pages\":\"3-8\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Journal of Emerging and Selected Topics in Industrial Electronics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10700593/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Emerging and Selected Topics in Industrial Electronics","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10700593/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种单相无桥单端基于初级电感的功率因数校正(PFC)变换器,可作为车载低压电动汽车充电应用的前端变换器。在不连续电感电流模式下固有实现PFC的能力被利用在拟议的转换器中,因此,完全消除了输入电压/电流传感的需要。此外,由于所有有源开关共享的共同点,所提出的转换器的结构降低了栅极驱动器的复杂性,这进一步增加了成本效益。给出了1 kW样机的实验结果,验证了在稳态和动态条件下宽输出和输入电压范围的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bridgeless SEPIC PFC Converter for Low-Voltage EV Applications With Reduced Sensor Count
This article proposes a single-phase bridgeless single-ended primary inductance-based power factor correction (PFC) converter that can function as a front-end converter for on-board low-voltage electric vehicle charging applications. The ability to inherently achieve the PFC in discontinuous inductor current mode is utilized in the proposed converter, thereby, the need for input voltage/current sensing is completely eliminated. Further, the structure of the proposed converter reduces the gate driver complexity owing to the common ground shared by all of the active switches which further adds to the cost effectiveness. The experimental results from a 1 kW prototype are presented to validate feasibility under steady state and dynamic conditions for wide output and input voltage ranges.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信