Yihao Guo;Longye Qiao;Zhixiong Yang;Jianping Xiang;Xinlong Feng;Hongbing Ma
{"title":"假新闻检测:可扩展到具有外部知识的全局异构图注意网络","authors":"Yihao Guo;Longye Qiao;Zhixiong Yang;Jianping Xiang;Xinlong Feng;Hongbing Ma","doi":"10.26599/TST.2023.9010104","DOIUrl":null,"url":null,"abstract":"Distinguishing genuine news from false information is crucial in today's digital era. Most of the existing methods are based on either the traditional neural network sequence model or graph neural network model that has become more popularity in recent years. Among these two types of models, the latter solve the former's problem of neglecting the correlation among news sentences. However, one layer of the graph neural network only considers the information of nodes directly connected to the current nodes and omits the important information carried by distant nodes. As such, this study proposes the Extendable-to-Global Heterogeneous Graph Attention network (namely EGHGAT) to manage heterogeneous graphs by cleverly extending local attention to global attention and addressing the drawback of local attention that can only collect information from directly connected nodes. The shortest distance matrix is computed among all nodes on the graph. Specifically, the shortest distance information is used to enable the current nodes to aggregate information from more distant nodes by considering the influence of different node types on the current nodes in the current network layer. This mechanism highlights the importance of directly or indirectly connected nodes and the effect of different node types on the current nodes, which can substantially enhance the performance of the model. Information from an external knowledge base is used to compare the contextual entity representation with the entity representation of the corresponding knowledge base to capture its consistency with news content. Experimental results from the benchmark dataset reveal that the proposed model significantly outperforms the state-of-the-art approach. Our code is publicly available at https://github.com/gyhhk/EGHGAT_FakeNewsDetection.","PeriodicalId":48690,"journal":{"name":"Tsinghua Science and Technology","volume":"30 3","pages":"1125-1138"},"PeriodicalIF":6.6000,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10817715","citationCount":"0","resultStr":"{\"title\":\"Fake News Detection: Extendable to Global Heterogeneous Graph Attention Network with External Knowledge\",\"authors\":\"Yihao Guo;Longye Qiao;Zhixiong Yang;Jianping Xiang;Xinlong Feng;Hongbing Ma\",\"doi\":\"10.26599/TST.2023.9010104\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Distinguishing genuine news from false information is crucial in today's digital era. Most of the existing methods are based on either the traditional neural network sequence model or graph neural network model that has become more popularity in recent years. Among these two types of models, the latter solve the former's problem of neglecting the correlation among news sentences. However, one layer of the graph neural network only considers the information of nodes directly connected to the current nodes and omits the important information carried by distant nodes. As such, this study proposes the Extendable-to-Global Heterogeneous Graph Attention network (namely EGHGAT) to manage heterogeneous graphs by cleverly extending local attention to global attention and addressing the drawback of local attention that can only collect information from directly connected nodes. The shortest distance matrix is computed among all nodes on the graph. Specifically, the shortest distance information is used to enable the current nodes to aggregate information from more distant nodes by considering the influence of different node types on the current nodes in the current network layer. This mechanism highlights the importance of directly or indirectly connected nodes and the effect of different node types on the current nodes, which can substantially enhance the performance of the model. Information from an external knowledge base is used to compare the contextual entity representation with the entity representation of the corresponding knowledge base to capture its consistency with news content. Experimental results from the benchmark dataset reveal that the proposed model significantly outperforms the state-of-the-art approach. Our code is publicly available at https://github.com/gyhhk/EGHGAT_FakeNewsDetection.\",\"PeriodicalId\":48690,\"journal\":{\"name\":\"Tsinghua Science and Technology\",\"volume\":\"30 3\",\"pages\":\"1125-1138\"},\"PeriodicalIF\":6.6000,\"publicationDate\":\"2024-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10817715\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tsinghua Science and Technology\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10817715/\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Multidisciplinary\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tsinghua Science and Technology","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10817715/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Multidisciplinary","Score":null,"Total":0}
Fake News Detection: Extendable to Global Heterogeneous Graph Attention Network with External Knowledge
Distinguishing genuine news from false information is crucial in today's digital era. Most of the existing methods are based on either the traditional neural network sequence model or graph neural network model that has become more popularity in recent years. Among these two types of models, the latter solve the former's problem of neglecting the correlation among news sentences. However, one layer of the graph neural network only considers the information of nodes directly connected to the current nodes and omits the important information carried by distant nodes. As such, this study proposes the Extendable-to-Global Heterogeneous Graph Attention network (namely EGHGAT) to manage heterogeneous graphs by cleverly extending local attention to global attention and addressing the drawback of local attention that can only collect information from directly connected nodes. The shortest distance matrix is computed among all nodes on the graph. Specifically, the shortest distance information is used to enable the current nodes to aggregate information from more distant nodes by considering the influence of different node types on the current nodes in the current network layer. This mechanism highlights the importance of directly or indirectly connected nodes and the effect of different node types on the current nodes, which can substantially enhance the performance of the model. Information from an external knowledge base is used to compare the contextual entity representation with the entity representation of the corresponding knowledge base to capture its consistency with news content. Experimental results from the benchmark dataset reveal that the proposed model significantly outperforms the state-of-the-art approach. Our code is publicly available at https://github.com/gyhhk/EGHGAT_FakeNewsDetection.
期刊介绍:
Tsinghua Science and Technology (Tsinghua Sci Technol) started publication in 1996. It is an international academic journal sponsored by Tsinghua University and is published bimonthly. This journal aims at presenting the up-to-date scientific achievements in computer science, electronic engineering, and other IT fields. Contributions all over the world are welcome.