与无限维分数帕斯卡度量相关的阿佩尔系统

IF 2.5 2区 数学 Q1 MATHEMATICS
Anis Riahi, Luigi Accardi, Mohamed Rhaima, Hazar Ennafti
{"title":"与无限维分数帕斯卡度量相关的阿佩尔系统","authors":"Anis Riahi, Luigi Accardi, Mohamed Rhaima, Hazar Ennafti","doi":"10.1007/s13540-024-00357-2","DOIUrl":null,"url":null,"abstract":"<p>In this work, we employ a biorthogonal approach to construct the infinite-dimensional Fractional Pascal measure <span>\\(\\mu ^{(\\alpha )}_{_{\\sigma }}, 0 &lt; \\alpha \\le 1\\)</span>, defined on the tempered distributions space <span>\\(\\mathcal {E}'\\)</span> over <span>\\(\\mathbb {R} \\times \\mathbb {R}^{*}_{+}\\)</span>. The Hilbert space <span>\\(L^{2}(\\mu ^{(\\alpha )}_{_{\\sigma }})\\)</span> is characterized using a set of generalized Appell polynomials <span>\\(\\mathbb {P}^{(\\alpha )}_{\\widehat{\\sigma }}=\\{P^{(\\alpha )}_{n, \\widehat{\\sigma }}, n\\in \\mathbb {N}\\}\\)</span> associated with the measure <span>\\(\\mu ^{(\\alpha )}_{_{\\sigma }}\\)</span>. This paper presents novel properties of the kernels <span>\\(P^{(\\alpha )}_{n, \\widehat{\\sigma }}\\)</span> in infinite dimensions, offering valuable insights. Additionally, we delve into the discussion of the generalized dual Appell system, broadening the scope of our results.</p>","PeriodicalId":48928,"journal":{"name":"Fractional Calculus and Applied Analysis","volume":"14 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Appell system associated with the infinite dimensional Fractional Pascal measure\",\"authors\":\"Anis Riahi, Luigi Accardi, Mohamed Rhaima, Hazar Ennafti\",\"doi\":\"10.1007/s13540-024-00357-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this work, we employ a biorthogonal approach to construct the infinite-dimensional Fractional Pascal measure <span>\\\\(\\\\mu ^{(\\\\alpha )}_{_{\\\\sigma }}, 0 &lt; \\\\alpha \\\\le 1\\\\)</span>, defined on the tempered distributions space <span>\\\\(\\\\mathcal {E}'\\\\)</span> over <span>\\\\(\\\\mathbb {R} \\\\times \\\\mathbb {R}^{*}_{+}\\\\)</span>. The Hilbert space <span>\\\\(L^{2}(\\\\mu ^{(\\\\alpha )}_{_{\\\\sigma }})\\\\)</span> is characterized using a set of generalized Appell polynomials <span>\\\\(\\\\mathbb {P}^{(\\\\alpha )}_{\\\\widehat{\\\\sigma }}=\\\\{P^{(\\\\alpha )}_{n, \\\\widehat{\\\\sigma }}, n\\\\in \\\\mathbb {N}\\\\}\\\\)</span> associated with the measure <span>\\\\(\\\\mu ^{(\\\\alpha )}_{_{\\\\sigma }}\\\\)</span>. This paper presents novel properties of the kernels <span>\\\\(P^{(\\\\alpha )}_{n, \\\\widehat{\\\\sigma }}\\\\)</span> in infinite dimensions, offering valuable insights. Additionally, we delve into the discussion of the generalized dual Appell system, broadening the scope of our results.</p>\",\"PeriodicalId\":48928,\"journal\":{\"name\":\"Fractional Calculus and Applied Analysis\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fractional Calculus and Applied Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s13540-024-00357-2\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fractional Calculus and Applied Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s13540-024-00357-2","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在这项工作中,我们采用双正交方法来构造无限维分数阶Pascal测度\(\mu ^{(\alpha )}_{_{\sigma }}, 0 < \alpha \le 1\),该测度定义在\(\mathbb {R} \times \mathbb {R}^{*}_{+}\)上的缓变分布空间\(\mathcal {E}'\)上。希尔伯特空间\(L^{2}(\mu ^{(\alpha )}_{_{\sigma }})\)用一组广义阿佩尔多项式\(\mathbb {P}^{(\alpha )}_{\widehat{\sigma }}=\{P^{(\alpha )}_{n, \widehat{\sigma }}, n\in \mathbb {N}\}\)与测度\(\mu ^{(\alpha )}_{_{\sigma }}\)相关联来表征。本文提出了无限维核\(P^{(\alpha )}_{n, \widehat{\sigma }}\)的新性质,提供了有价值的见解。此外,我们深入讨论了广义双阿佩尔系统,扩大了我们的结果范围。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Appell system associated with the infinite dimensional Fractional Pascal measure

In this work, we employ a biorthogonal approach to construct the infinite-dimensional Fractional Pascal measure \(\mu ^{(\alpha )}_{_{\sigma }}, 0 < \alpha \le 1\), defined on the tempered distributions space \(\mathcal {E}'\) over \(\mathbb {R} \times \mathbb {R}^{*}_{+}\). The Hilbert space \(L^{2}(\mu ^{(\alpha )}_{_{\sigma }})\) is characterized using a set of generalized Appell polynomials \(\mathbb {P}^{(\alpha )}_{\widehat{\sigma }}=\{P^{(\alpha )}_{n, \widehat{\sigma }}, n\in \mathbb {N}\}\) associated with the measure \(\mu ^{(\alpha )}_{_{\sigma }}\). This paper presents novel properties of the kernels \(P^{(\alpha )}_{n, \widehat{\sigma }}\) in infinite dimensions, offering valuable insights. Additionally, we delve into the discussion of the generalized dual Appell system, broadening the scope of our results.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Fractional Calculus and Applied Analysis
Fractional Calculus and Applied Analysis MATHEMATICS, APPLIED-MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
CiteScore
4.70
自引率
16.70%
发文量
101
期刊介绍: Fractional Calculus and Applied Analysis (FCAA, abbreviated in the World databases as Fract. Calc. Appl. Anal. or FRACT CALC APPL ANAL) is a specialized international journal for theory and applications of an important branch of Mathematical Analysis (Calculus) where differentiations and integrations can be of arbitrary non-integer order. The high standards of its contents are guaranteed by the prominent members of Editorial Board and the expertise of invited external reviewers, and proven by the recently achieved high values of impact factor (JIF) and impact rang (SJR), launching the journal to top places of the ranking lists of Thomson Reuters and Scopus.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信