skinage XAI:一个可解释的皮肤病变诊断深度学习解决方案。

Geetika Munjal, Paarth Bhardwaj, Vaibhav Bhargava, Shivendra Singh, Nimish Nagpal
{"title":"skinage XAI:一个可解释的皮肤病变诊断深度学习解决方案。","authors":"Geetika Munjal,&nbsp;Paarth Bhardwaj,&nbsp;Vaibhav Bhargava,&nbsp;Shivendra Singh,&nbsp;Nimish Nagpal","doi":"10.1002/hcs2.121","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Background</h3>\n \n <p>Skin cancer poses a significant global health threat, with early detection being essential for successful treatment. While deep learning algorithms have greatly enhanced the categorization of skin lesions, the black-box nature of many models limits interpretability, posing challenges for dermatologists.</p>\n </section>\n \n <section>\n \n <h3> Methods</h3>\n \n <p>To address these limitations, SkinSage XAI utilizes advanced explainable artificial intelligence (XAI) techniques for skin lesion categorization. A data set of around 50,000 images from the Customized HAM10000, selected for diversity, serves as the foundation. The Inception v3 model is used for classification, supported by gradient-weighted class activation mapping and local interpretable model-agnostic explanations algorithms, which provide clear visual explanations for model outputs.</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>SkinSage XAI demonstrated high performance, accurately categorizing seven types of skin lesions—dermatofibroma, benign keratosis, melanocytic nevus, vascular lesion, actinic keratosis, basal cell carcinoma, and melanoma. It achieved an accuracy of 96%, with precision at 96.42%, recall at 96.28%, <span><i>F</i><sub>1</sub></span> score at 96.14%, and an area under the curve of 99.83%.</p>\n </section>\n \n <section>\n \n <h3> Conclusions</h3>\n \n <p>SkinSage XAI represents a significant advancement in dermatology and artificial intelligence by bridging gaps in accuracy and explainability. The system provides transparent, accurate diagnoses, improving decision-making for dermatologists and potentially enhancing patient outcomes.</p>\n </section>\n </div>","PeriodicalId":100601,"journal":{"name":"Health Care Science","volume":"3 6","pages":"438-455"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11671215/pdf/","citationCount":"0","resultStr":"{\"title\":\"SkinSage XAI: An explainable deep learning solution for skin lesion diagnosis\",\"authors\":\"Geetika Munjal,&nbsp;Paarth Bhardwaj,&nbsp;Vaibhav Bhargava,&nbsp;Shivendra Singh,&nbsp;Nimish Nagpal\",\"doi\":\"10.1002/hcs2.121\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n \\n <section>\\n \\n <h3> Background</h3>\\n \\n <p>Skin cancer poses a significant global health threat, with early detection being essential for successful treatment. While deep learning algorithms have greatly enhanced the categorization of skin lesions, the black-box nature of many models limits interpretability, posing challenges for dermatologists.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Methods</h3>\\n \\n <p>To address these limitations, SkinSage XAI utilizes advanced explainable artificial intelligence (XAI) techniques for skin lesion categorization. A data set of around 50,000 images from the Customized HAM10000, selected for diversity, serves as the foundation. The Inception v3 model is used for classification, supported by gradient-weighted class activation mapping and local interpretable model-agnostic explanations algorithms, which provide clear visual explanations for model outputs.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Results</h3>\\n \\n <p>SkinSage XAI demonstrated high performance, accurately categorizing seven types of skin lesions—dermatofibroma, benign keratosis, melanocytic nevus, vascular lesion, actinic keratosis, basal cell carcinoma, and melanoma. It achieved an accuracy of 96%, with precision at 96.42%, recall at 96.28%, <span><i>F</i><sub>1</sub></span> score at 96.14%, and an area under the curve of 99.83%.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Conclusions</h3>\\n \\n <p>SkinSage XAI represents a significant advancement in dermatology and artificial intelligence by bridging gaps in accuracy and explainability. The system provides transparent, accurate diagnoses, improving decision-making for dermatologists and potentially enhancing patient outcomes.</p>\\n </section>\\n </div>\",\"PeriodicalId\":100601,\"journal\":{\"name\":\"Health Care Science\",\"volume\":\"3 6\",\"pages\":\"438-455\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11671215/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Health Care Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/hcs2.121\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Health Care Science","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/hcs2.121","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

背景:皮肤癌对全球健康构成重大威胁,早期发现对成功治疗至关重要。虽然深度学习算法大大增强了皮肤病变的分类,但许多模型的黑箱性质限制了可解释性,给皮肤科医生带来了挑战。方法:为了解决这些局限性,SkinSage XAI利用先进的可解释人工智能(XAI)技术对皮肤病变进行分类。从定制的HAM10000中选择了大约5万张图像作为基础。Inception v3模型用于分类,由梯度加权类激活映射和局部可解释的模型无关解释算法支持,这些算法为模型输出提供了清晰的可视化解释。结果:SkinSage XAI表现出高性能,准确地分类了7种皮肤病变:皮肤纤维瘤、良性角化病、黑素细胞痣、血管病变、光化性角化病、基底细胞癌和黑色素瘤。准确率为96%,精密度为96.42%,召回率为96.28%,f1分数为96.14%,曲线下面积为99.83%。结论:SkinSage XAI通过弥合准确性和可解释性方面的差距,代表了皮肤病学和人工智能的重大进步。该系统提供透明、准确的诊断,改善皮肤科医生的决策,并有可能提高患者的治疗效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

SkinSage XAI: An explainable deep learning solution for skin lesion diagnosis

SkinSage XAI: An explainable deep learning solution for skin lesion diagnosis

Background

Skin cancer poses a significant global health threat, with early detection being essential for successful treatment. While deep learning algorithms have greatly enhanced the categorization of skin lesions, the black-box nature of many models limits interpretability, posing challenges for dermatologists.

Methods

To address these limitations, SkinSage XAI utilizes advanced explainable artificial intelligence (XAI) techniques for skin lesion categorization. A data set of around 50,000 images from the Customized HAM10000, selected for diversity, serves as the foundation. The Inception v3 model is used for classification, supported by gradient-weighted class activation mapping and local interpretable model-agnostic explanations algorithms, which provide clear visual explanations for model outputs.

Results

SkinSage XAI demonstrated high performance, accurately categorizing seven types of skin lesions—dermatofibroma, benign keratosis, melanocytic nevus, vascular lesion, actinic keratosis, basal cell carcinoma, and melanoma. It achieved an accuracy of 96%, with precision at 96.42%, recall at 96.28%, F1 score at 96.14%, and an area under the curve of 99.83%.

Conclusions

SkinSage XAI represents a significant advancement in dermatology and artificial intelligence by bridging gaps in accuracy and explainability. The system provides transparent, accurate diagnoses, improving decision-making for dermatologists and potentially enhancing patient outcomes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信