谱不变量的局域到全局不等式和Floer轨迹的能量二分法。

Lev Buhovsky, Shira Tanny
{"title":"谱不变量的局域到全局不等式和Floer轨迹的能量二分法。","authors":"Lev Buhovsky, Shira Tanny","doi":"10.1007/s11784-024-01154-3","DOIUrl":null,"url":null,"abstract":"<p><p>We study a local-to-global inequality for spectral invariants of Hamiltonians whose supports have a \"large enough\" disjoint tubular neighborhood on semipositive symplectic manifolds. As a corollary, we deduce this inequality for disjointly supported Hamiltonians that are <math><msup><mi>C</mi> <mn>0</mn></msup> </math> -small (when fixing the supports). In particular, we present the first examples of such an inequality when the Hamiltonians are not necessarily supported in domains with contact-type boundaries, or when the ambient manifold is irrational. This extends a series of previous works studying locality phenomena of spectral invariants [9, 13, 15, 20, 25, 27]. A main new tool is a lower bound, in the spirit of Sikorav, for the energy of Floer trajectories that cross the tubular neighborhood against the direction of the negative-gradient vector field.</p>","PeriodicalId":93461,"journal":{"name":"Journal of fixed point theory and Its applications","volume":"27 1","pages":"3"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11671577/pdf/","citationCount":"0","resultStr":"{\"title\":\"A local-to-global inequality for spectral invariants and an energy dichotomy for Floer trajectories.\",\"authors\":\"Lev Buhovsky, Shira Tanny\",\"doi\":\"10.1007/s11784-024-01154-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We study a local-to-global inequality for spectral invariants of Hamiltonians whose supports have a \\\"large enough\\\" disjoint tubular neighborhood on semipositive symplectic manifolds. As a corollary, we deduce this inequality for disjointly supported Hamiltonians that are <math><msup><mi>C</mi> <mn>0</mn></msup> </math> -small (when fixing the supports). In particular, we present the first examples of such an inequality when the Hamiltonians are not necessarily supported in domains with contact-type boundaries, or when the ambient manifold is irrational. This extends a series of previous works studying locality phenomena of spectral invariants [9, 13, 15, 20, 25, 27]. A main new tool is a lower bound, in the spirit of Sikorav, for the energy of Floer trajectories that cross the tubular neighborhood against the direction of the negative-gradient vector field.</p>\",\"PeriodicalId\":93461,\"journal\":{\"name\":\"Journal of fixed point theory and Its applications\",\"volume\":\"27 1\",\"pages\":\"3\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11671577/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of fixed point theory and Its applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s11784-024-01154-3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/26 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of fixed point theory and Its applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11784-024-01154-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/26 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

研究了半正辛流形上支持具有“足够大”的不相交管状邻域的哈密顿算子的谱不变量的局域到全局不等式。作为推论,我们推导出这个不等式对于C 0 -小的不联合支持的哈密顿量(当固定支持时)。特别地,我们给出了这种不等式的第一个例子,当哈密顿量在具有接触型边界的域中不一定被支持,或者当环境流形是非理性的。这扩展了一系列先前研究谱不变量局域现象的工作[9,13,15,20,25,27]。一个主要的新工具是一个下界,在Sikorav的精神下,弗洛尔轨迹的能量与负梯度矢量场的方向相反,穿过管状邻域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A local-to-global inequality for spectral invariants and an energy dichotomy for Floer trajectories.

We study a local-to-global inequality for spectral invariants of Hamiltonians whose supports have a "large enough" disjoint tubular neighborhood on semipositive symplectic manifolds. As a corollary, we deduce this inequality for disjointly supported Hamiltonians that are C 0 -small (when fixing the supports). In particular, we present the first examples of such an inequality when the Hamiltonians are not necessarily supported in domains with contact-type boundaries, or when the ambient manifold is irrational. This extends a series of previous works studying locality phenomena of spectral invariants [9, 13, 15, 20, 25, 27]. A main new tool is a lower bound, in the spirit of Sikorav, for the energy of Floer trajectories that cross the tubular neighborhood against the direction of the negative-gradient vector field.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信