欧洲血统人群的多基因评分分布差异:对乳腺癌风险预测的影响。

IF 7.4 1区 医学 Q1 Medicine
Kristia Yiangou, Nasim Mavaddat, Joe Dennis, Maria Zanti, Qin Wang, Manjeet K Bolla, Mustapha Abubakar, Thomas U Ahearn, Irene L Andrulis, Hoda Anton-Culver, Natalia N Antonenkova, Volker Arndt, Kristan J Aronson, Annelie Augustinsson, Adinda Baten, Sabine Behrens, Marina Bermisheva, Amy Berrington de Gonzalez, Katarzyna Białkowska, Nicholas Boddicker, Clara Bodelon, Natalia V Bogdanova, Stig E Bojesen, Kristen D Brantley, Hiltrud Brauch, Hermann Brenner, Nicola J Camp, Federico Canzian, Jose E Castelao, Melissa H Cessna, Jenny Chang-Claude, Georgia Chenevix-Trench, Wendy K Chung, Sarah V Colonna, Fergus J Couch, Angela Cox, Simon S Cross, Kamila Czene, Mary B Daly, Peter Devilee, Thilo Dörk, Alison M Dunning, Diana M Eccles, A Heather Eliassen, Christoph Engel, Mikael Eriksson, D Gareth Evans, Peter A Fasching, Olivia Fletcher, Henrik Flyger, Lin Fritschi, Manuela Gago-Dominguez, Aleksandra Gentry-Maharaj, Anna González-Neira, Pascal Guénel, Eric Hahnen, Christopher A Haiman, Ute Hamann, Jaana M Hartikainen, Vikki Ho, James Hodge, Antoinette Hollestelle, Ellen Honisch, Maartje J Hooning, Reiner Hoppe, John L Hopper, Sacha Howell, Anthony Howell, Simona Jakovchevska, Anna Jakubowska, Helena Jernström, Nichola Johnson, Rudolf Kaaks, Elza K Khusnutdinova, Cari M Kitahara, Stella Koutros, Vessela N Kristensen, James V Lacey, Diether Lambrechts, Flavio Lejbkowicz, Annika Lindblom, Michael Lush, Arto Mannermaa, Dimitrios Mavroudis, Usha Menon, Rachel A Murphy, Heli Nevanlinna, Nadia Obi, Kenneth Offit, Tjoung-Won Park-Simon, Alpa V Patel, Cheng Peng, Paolo Peterlongo, Guillermo Pita, Dijana Plaseska-Karanfilska, Katri Pylkäs, Paolo Radice, Muhammad U Rashid, Gad Rennert, Eleanor Roberts, Juan Rodriguez, Atocha Romero, Efraim H Rosenberg, Emmanouil Saloustros, Dale P Sandler, Elinor J Sawyer, Rita K Schmutzler, Christopher G Scott, Xiao-Ou Shu, Melissa C Southey, Jennifer Stone, Jack A Taylor, Lauren R Teras, Irma van de Beek, Walter Willett, Robert Winqvist, Wei Zheng, Celine M Vachon, Marjanka K Schmidt, Per Hall, Robert J MacInnis, Roger L Milne, Paul D P Pharoah, Jacques Simard, Antonis C Antoniou, Douglas F Easton, Kyriaki Michailidou
{"title":"欧洲血统人群的多基因评分分布差异:对乳腺癌风险预测的影响。","authors":"Kristia Yiangou, Nasim Mavaddat, Joe Dennis, Maria Zanti, Qin Wang, Manjeet K Bolla, Mustapha Abubakar, Thomas U Ahearn, Irene L Andrulis, Hoda Anton-Culver, Natalia N Antonenkova, Volker Arndt, Kristan J Aronson, Annelie Augustinsson, Adinda Baten, Sabine Behrens, Marina Bermisheva, Amy Berrington de Gonzalez, Katarzyna Białkowska, Nicholas Boddicker, Clara Bodelon, Natalia V Bogdanova, Stig E Bojesen, Kristen D Brantley, Hiltrud Brauch, Hermann Brenner, Nicola J Camp, Federico Canzian, Jose E Castelao, Melissa H Cessna, Jenny Chang-Claude, Georgia Chenevix-Trench, Wendy K Chung, Sarah V Colonna, Fergus J Couch, Angela Cox, Simon S Cross, Kamila Czene, Mary B Daly, Peter Devilee, Thilo Dörk, Alison M Dunning, Diana M Eccles, A Heather Eliassen, Christoph Engel, Mikael Eriksson, D Gareth Evans, Peter A Fasching, Olivia Fletcher, Henrik Flyger, Lin Fritschi, Manuela Gago-Dominguez, Aleksandra Gentry-Maharaj, Anna González-Neira, Pascal Guénel, Eric Hahnen, Christopher A Haiman, Ute Hamann, Jaana M Hartikainen, Vikki Ho, James Hodge, Antoinette Hollestelle, Ellen Honisch, Maartje J Hooning, Reiner Hoppe, John L Hopper, Sacha Howell, Anthony Howell, Simona Jakovchevska, Anna Jakubowska, Helena Jernström, Nichola Johnson, Rudolf Kaaks, Elza K Khusnutdinova, Cari M Kitahara, Stella Koutros, Vessela N Kristensen, James V Lacey, Diether Lambrechts, Flavio Lejbkowicz, Annika Lindblom, Michael Lush, Arto Mannermaa, Dimitrios Mavroudis, Usha Menon, Rachel A Murphy, Heli Nevanlinna, Nadia Obi, Kenneth Offit, Tjoung-Won Park-Simon, Alpa V Patel, Cheng Peng, Paolo Peterlongo, Guillermo Pita, Dijana Plaseska-Karanfilska, Katri Pylkäs, Paolo Radice, Muhammad U Rashid, Gad Rennert, Eleanor Roberts, Juan Rodriguez, Atocha Romero, Efraim H Rosenberg, Emmanouil Saloustros, Dale P Sandler, Elinor J Sawyer, Rita K Schmutzler, Christopher G Scott, Xiao-Ou Shu, Melissa C Southey, Jennifer Stone, Jack A Taylor, Lauren R Teras, Irma van de Beek, Walter Willett, Robert Winqvist, Wei Zheng, Celine M Vachon, Marjanka K Schmidt, Per Hall, Robert J MacInnis, Roger L Milne, Paul D P Pharoah, Jacques Simard, Antonis C Antoniou, Douglas F Easton, Kyriaki Michailidou","doi":"10.1186/s13058-024-01947-x","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The 313-variant polygenic risk score (PRS<sub>313</sub>) provides a promising tool for clinical breast cancer risk prediction. However, evaluation of the PRS<sub>313</sub> across different European populations which could influence risk estimation has not been performed.</p><p><strong>Methods: </strong>We explored the distribution of PRS<sub>313</sub> across European populations using genotype data from 94,072 females without breast cancer diagnosis, of European-ancestry from 21 countries participating in the Breast Cancer Association Consortium (BCAC) and 223,316 females without breast cancer diagnosis from the UK Biobank. The mean PRS was calculated by country in the BCAC dataset and by country of birth in the UK Biobank. We explored different approaches to reduce the observed heterogeneity in the mean PRS across the countries, and investigated the implications of the distribution variability in risk prediction.</p><p><strong>Results: </strong>The mean PRS<sub>313</sub> differed markedly across European countries, being highest in individuals from Greece and Italy and lowest in individuals from Ireland. Using the overall European PRS<sub>313</sub> distribution to define risk categories, leads to overestimation and underestimation of risk in some individuals from these countries. Adjustment for principal components explained most of the observed heterogeneity in the mean PRS. The mean estimates derived when using an empirical Bayes approach were similar to the predicted means after principal component adjustment.</p><p><strong>Conclusions: </strong>Our results demonstrate that PRS distribution differs even within European ancestry populations leading to underestimation or overestimation of risk in specific European countries, which could potentially influence clinical management of some individuals if is not appropriately accounted for. Population-specific PRS distributions may be used in breast cancer risk estimation to ensure predicted risks are correctly calibrated across risk categories.</p>","PeriodicalId":49227,"journal":{"name":"Breast Cancer Research","volume":"26 1","pages":"189"},"PeriodicalIF":7.4000,"publicationDate":"2024-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11682615/pdf/","citationCount":"0","resultStr":"{\"title\":\"Polygenic score distribution differences across European ancestry populations: implications for breast cancer risk prediction.\",\"authors\":\"Kristia Yiangou, Nasim Mavaddat, Joe Dennis, Maria Zanti, Qin Wang, Manjeet K Bolla, Mustapha Abubakar, Thomas U Ahearn, Irene L Andrulis, Hoda Anton-Culver, Natalia N Antonenkova, Volker Arndt, Kristan J Aronson, Annelie Augustinsson, Adinda Baten, Sabine Behrens, Marina Bermisheva, Amy Berrington de Gonzalez, Katarzyna Białkowska, Nicholas Boddicker, Clara Bodelon, Natalia V Bogdanova, Stig E Bojesen, Kristen D Brantley, Hiltrud Brauch, Hermann Brenner, Nicola J Camp, Federico Canzian, Jose E Castelao, Melissa H Cessna, Jenny Chang-Claude, Georgia Chenevix-Trench, Wendy K Chung, Sarah V Colonna, Fergus J Couch, Angela Cox, Simon S Cross, Kamila Czene, Mary B Daly, Peter Devilee, Thilo Dörk, Alison M Dunning, Diana M Eccles, A Heather Eliassen, Christoph Engel, Mikael Eriksson, D Gareth Evans, Peter A Fasching, Olivia Fletcher, Henrik Flyger, Lin Fritschi, Manuela Gago-Dominguez, Aleksandra Gentry-Maharaj, Anna González-Neira, Pascal Guénel, Eric Hahnen, Christopher A Haiman, Ute Hamann, Jaana M Hartikainen, Vikki Ho, James Hodge, Antoinette Hollestelle, Ellen Honisch, Maartje J Hooning, Reiner Hoppe, John L Hopper, Sacha Howell, Anthony Howell, Simona Jakovchevska, Anna Jakubowska, Helena Jernström, Nichola Johnson, Rudolf Kaaks, Elza K Khusnutdinova, Cari M Kitahara, Stella Koutros, Vessela N Kristensen, James V Lacey, Diether Lambrechts, Flavio Lejbkowicz, Annika Lindblom, Michael Lush, Arto Mannermaa, Dimitrios Mavroudis, Usha Menon, Rachel A Murphy, Heli Nevanlinna, Nadia Obi, Kenneth Offit, Tjoung-Won Park-Simon, Alpa V Patel, Cheng Peng, Paolo Peterlongo, Guillermo Pita, Dijana Plaseska-Karanfilska, Katri Pylkäs, Paolo Radice, Muhammad U Rashid, Gad Rennert, Eleanor Roberts, Juan Rodriguez, Atocha Romero, Efraim H Rosenberg, Emmanouil Saloustros, Dale P Sandler, Elinor J Sawyer, Rita K Schmutzler, Christopher G Scott, Xiao-Ou Shu, Melissa C Southey, Jennifer Stone, Jack A Taylor, Lauren R Teras, Irma van de Beek, Walter Willett, Robert Winqvist, Wei Zheng, Celine M Vachon, Marjanka K Schmidt, Per Hall, Robert J MacInnis, Roger L Milne, Paul D P Pharoah, Jacques Simard, Antonis C Antoniou, Douglas F Easton, Kyriaki Michailidou\",\"doi\":\"10.1186/s13058-024-01947-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>The 313-variant polygenic risk score (PRS<sub>313</sub>) provides a promising tool for clinical breast cancer risk prediction. However, evaluation of the PRS<sub>313</sub> across different European populations which could influence risk estimation has not been performed.</p><p><strong>Methods: </strong>We explored the distribution of PRS<sub>313</sub> across European populations using genotype data from 94,072 females without breast cancer diagnosis, of European-ancestry from 21 countries participating in the Breast Cancer Association Consortium (BCAC) and 223,316 females without breast cancer diagnosis from the UK Biobank. The mean PRS was calculated by country in the BCAC dataset and by country of birth in the UK Biobank. We explored different approaches to reduce the observed heterogeneity in the mean PRS across the countries, and investigated the implications of the distribution variability in risk prediction.</p><p><strong>Results: </strong>The mean PRS<sub>313</sub> differed markedly across European countries, being highest in individuals from Greece and Italy and lowest in individuals from Ireland. Using the overall European PRS<sub>313</sub> distribution to define risk categories, leads to overestimation and underestimation of risk in some individuals from these countries. Adjustment for principal components explained most of the observed heterogeneity in the mean PRS. The mean estimates derived when using an empirical Bayes approach were similar to the predicted means after principal component adjustment.</p><p><strong>Conclusions: </strong>Our results demonstrate that PRS distribution differs even within European ancestry populations leading to underestimation or overestimation of risk in specific European countries, which could potentially influence clinical management of some individuals if is not appropriately accounted for. Population-specific PRS distributions may be used in breast cancer risk estimation to ensure predicted risks are correctly calibrated across risk categories.</p>\",\"PeriodicalId\":49227,\"journal\":{\"name\":\"Breast Cancer Research\",\"volume\":\"26 1\",\"pages\":\"189\"},\"PeriodicalIF\":7.4000,\"publicationDate\":\"2024-12-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11682615/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Breast Cancer Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s13058-024-01947-x\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Breast Cancer Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13058-024-01947-x","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

摘要

背景:313变异多基因风险评分(PRS313)为临床乳腺癌风险预测提供了一种很有前景的工具。然而,尚未对可能影响风险估计的不同欧洲人群的PRS313进行评估。方法:我们利用来自乳腺癌协会联盟(BCAC)参与的21个国家的94072名无乳腺癌诊断的欧洲血统女性和来自英国生物银行的223316名无乳腺癌诊断的女性的基因型数据,探讨了PRS313在欧洲人群中的分布。平均PRS在BCAC数据集中按国家计算,在UK Biobank中按出生国家计算。我们探索了不同的方法来减少在各国平均PRS中观察到的异质性,并研究了分布变异性对风险预测的影响。结果:PRS313的平均值在欧洲国家之间存在显著差异,希腊和意大利的个体最高,爱尔兰的个体最低。使用整个欧洲PRS313分布来定义风险类别,导致来自这些国家的一些个体的风险高估和低估。主成分的调整解释了在平均PRS中观察到的大部分异质性。使用经验贝叶斯方法得到的均值估计与主成分调整后的预测均值相似。结论:我们的研究结果表明,即使在欧洲血统人群中,PRS分布也存在差异,导致特定欧洲国家的风险被低估或高估,如果没有得到适当的解释,这可能会影响某些个体的临床管理。人群特异性PRS分布可用于乳腺癌风险估计,以确保预测的风险在风险类别之间得到正确校准。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Polygenic score distribution differences across European ancestry populations: implications for breast cancer risk prediction.

Background: The 313-variant polygenic risk score (PRS313) provides a promising tool for clinical breast cancer risk prediction. However, evaluation of the PRS313 across different European populations which could influence risk estimation has not been performed.

Methods: We explored the distribution of PRS313 across European populations using genotype data from 94,072 females without breast cancer diagnosis, of European-ancestry from 21 countries participating in the Breast Cancer Association Consortium (BCAC) and 223,316 females without breast cancer diagnosis from the UK Biobank. The mean PRS was calculated by country in the BCAC dataset and by country of birth in the UK Biobank. We explored different approaches to reduce the observed heterogeneity in the mean PRS across the countries, and investigated the implications of the distribution variability in risk prediction.

Results: The mean PRS313 differed markedly across European countries, being highest in individuals from Greece and Italy and lowest in individuals from Ireland. Using the overall European PRS313 distribution to define risk categories, leads to overestimation and underestimation of risk in some individuals from these countries. Adjustment for principal components explained most of the observed heterogeneity in the mean PRS. The mean estimates derived when using an empirical Bayes approach were similar to the predicted means after principal component adjustment.

Conclusions: Our results demonstrate that PRS distribution differs even within European ancestry populations leading to underestimation or overestimation of risk in specific European countries, which could potentially influence clinical management of some individuals if is not appropriately accounted for. Population-specific PRS distributions may be used in breast cancer risk estimation to ensure predicted risks are correctly calibrated across risk categories.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
12.00
自引率
0.00%
发文量
76
审稿时长
12 weeks
期刊介绍: Breast Cancer Research, an international, peer-reviewed online journal, publishes original research, reviews, editorials, and reports. It features open-access research articles of exceptional interest across all areas of biology and medicine relevant to breast cancer. This includes normal mammary gland biology, with a special emphasis on the genetic, biochemical, and cellular basis of breast cancer. In addition to basic research, the journal covers preclinical, translational, and clinical studies with a biological basis, including Phase I and Phase II trials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信