{"title":"基于方向矢量的x射线透视保护板效果快速评价方法。","authors":"Kyoko Hizukuri, Toshioh Fujibuchi, Donghee Han, Hiroyuki Arakawa, Takuya Furuta","doi":"10.1007/s12194-024-00873-z","DOIUrl":null,"url":null,"abstract":"<p><p>One radiation protection measure for medical personnel in X-ray fluoroscopy is using radiation protective plates. A real-time interactive tool visualizing radiation-dose distribution varied with the protective plate position will help greatly to train medical personnel to protect themselves from unnecessary radiation exposure. Monte Carlo simulation can calculate the individual interactions between radiations and objects in the X-ray room, and reproduce the complex dose distribution inside the room. However, Monte Carlo simulation is computationally time-consuming and not suited for real-time feedback. Therefore, we developed a new method to calculate the dose distribution with the presence of protective plates instantly using pre-computed directional vectors, named Directional vector-based Quick evaluation method for Protective plates Effects in X-ray fluoroscopy (DQPEX). DQPEX uses a database of dose distributions and directional vectors precomputed by Monte Carlo code, Particle and Heavy Ion Transport code System (PHITS). Assuming the dose at each position was all contributed from radiations in the direction indicated by the directional vector, the dose reduction by the protective plates at the position was determined whether the backtrace line of the directional vector has a intersect with the protective plate or not. With DQPEX, the whole dose distribution in X-ray room with the presence of a protective plate can be computed about 13 s, which is approximately 1/6000 of the full PHITS simulation. Sufficient accuracy of DQPEX to visualize the effect of a protective plate was confirmed by comparing the obtained dose distribution with those obtained by the full PHITS simulation and measurements.</p>","PeriodicalId":46252,"journal":{"name":"Radiological Physics and Technology","volume":" ","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Directional vector-based quick evaluation method for protective plate effects in X-ray fluoroscopy (DQPEX).\",\"authors\":\"Kyoko Hizukuri, Toshioh Fujibuchi, Donghee Han, Hiroyuki Arakawa, Takuya Furuta\",\"doi\":\"10.1007/s12194-024-00873-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>One radiation protection measure for medical personnel in X-ray fluoroscopy is using radiation protective plates. A real-time interactive tool visualizing radiation-dose distribution varied with the protective plate position will help greatly to train medical personnel to protect themselves from unnecessary radiation exposure. Monte Carlo simulation can calculate the individual interactions between radiations and objects in the X-ray room, and reproduce the complex dose distribution inside the room. However, Monte Carlo simulation is computationally time-consuming and not suited for real-time feedback. Therefore, we developed a new method to calculate the dose distribution with the presence of protective plates instantly using pre-computed directional vectors, named Directional vector-based Quick evaluation method for Protective plates Effects in X-ray fluoroscopy (DQPEX). DQPEX uses a database of dose distributions and directional vectors precomputed by Monte Carlo code, Particle and Heavy Ion Transport code System (PHITS). Assuming the dose at each position was all contributed from radiations in the direction indicated by the directional vector, the dose reduction by the protective plates at the position was determined whether the backtrace line of the directional vector has a intersect with the protective plate or not. With DQPEX, the whole dose distribution in X-ray room with the presence of a protective plate can be computed about 13 s, which is approximately 1/6000 of the full PHITS simulation. Sufficient accuracy of DQPEX to visualize the effect of a protective plate was confirmed by comparing the obtained dose distribution with those obtained by the full PHITS simulation and measurements.</p>\",\"PeriodicalId\":46252,\"journal\":{\"name\":\"Radiological Physics and Technology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-12-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Radiological Physics and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s12194-024-00873-z\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiological Physics and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12194-024-00873-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
Directional vector-based quick evaluation method for protective plate effects in X-ray fluoroscopy (DQPEX).
One radiation protection measure for medical personnel in X-ray fluoroscopy is using radiation protective plates. A real-time interactive tool visualizing radiation-dose distribution varied with the protective plate position will help greatly to train medical personnel to protect themselves from unnecessary radiation exposure. Monte Carlo simulation can calculate the individual interactions between radiations and objects in the X-ray room, and reproduce the complex dose distribution inside the room. However, Monte Carlo simulation is computationally time-consuming and not suited for real-time feedback. Therefore, we developed a new method to calculate the dose distribution with the presence of protective plates instantly using pre-computed directional vectors, named Directional vector-based Quick evaluation method for Protective plates Effects in X-ray fluoroscopy (DQPEX). DQPEX uses a database of dose distributions and directional vectors precomputed by Monte Carlo code, Particle and Heavy Ion Transport code System (PHITS). Assuming the dose at each position was all contributed from radiations in the direction indicated by the directional vector, the dose reduction by the protective plates at the position was determined whether the backtrace line of the directional vector has a intersect with the protective plate or not. With DQPEX, the whole dose distribution in X-ray room with the presence of a protective plate can be computed about 13 s, which is approximately 1/6000 of the full PHITS simulation. Sufficient accuracy of DQPEX to visualize the effect of a protective plate was confirmed by comparing the obtained dose distribution with those obtained by the full PHITS simulation and measurements.
期刊介绍:
The purpose of the journal Radiological Physics and Technology is to provide a forum for sharing new knowledge related to research and development in radiological science and technology, including medical physics and radiological technology in diagnostic radiology, nuclear medicine, and radiation therapy among many other radiological disciplines, as well as to contribute to progress and improvement in medical practice and patient health care.