基于方向矢量的x射线透视保护板效果快速评价方法。

IF 1.7 Q3 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
Kyoko Hizukuri, Toshioh Fujibuchi, Donghee Han, Hiroyuki Arakawa, Takuya Furuta
{"title":"基于方向矢量的x射线透视保护板效果快速评价方法。","authors":"Kyoko Hizukuri, Toshioh Fujibuchi, Donghee Han, Hiroyuki Arakawa, Takuya Furuta","doi":"10.1007/s12194-024-00873-z","DOIUrl":null,"url":null,"abstract":"<p><p>One radiation protection measure for medical personnel in X-ray fluoroscopy is using radiation protective plates. A real-time interactive tool visualizing radiation-dose distribution varied with the protective plate position will help greatly to train medical personnel to protect themselves from unnecessary radiation exposure. Monte Carlo simulation can calculate the individual interactions between radiations and objects in the X-ray room, and reproduce the complex dose distribution inside the room. However, Monte Carlo simulation is computationally time-consuming and not suited for real-time feedback. Therefore, we developed a new method to calculate the dose distribution with the presence of protective plates instantly using pre-computed directional vectors, named Directional vector-based Quick evaluation method for Protective plates Effects in X-ray fluoroscopy (DQPEX). DQPEX uses a database of dose distributions and directional vectors precomputed by Monte Carlo code, Particle and Heavy Ion Transport code System (PHITS). Assuming the dose at each position was all contributed from radiations in the direction indicated by the directional vector, the dose reduction by the protective plates at the position was determined whether the backtrace line of the directional vector has a intersect with the protective plate or not. With DQPEX, the whole dose distribution in X-ray room with the presence of a protective plate can be computed about 13 s, which is approximately 1/6000 of the full PHITS simulation. Sufficient accuracy of DQPEX to visualize the effect of a protective plate was confirmed by comparing the obtained dose distribution with those obtained by the full PHITS simulation and measurements.</p>","PeriodicalId":46252,"journal":{"name":"Radiological Physics and Technology","volume":" ","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Directional vector-based quick evaluation method for protective plate effects in X-ray fluoroscopy (DQPEX).\",\"authors\":\"Kyoko Hizukuri, Toshioh Fujibuchi, Donghee Han, Hiroyuki Arakawa, Takuya Furuta\",\"doi\":\"10.1007/s12194-024-00873-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>One radiation protection measure for medical personnel in X-ray fluoroscopy is using radiation protective plates. A real-time interactive tool visualizing radiation-dose distribution varied with the protective plate position will help greatly to train medical personnel to protect themselves from unnecessary radiation exposure. Monte Carlo simulation can calculate the individual interactions between radiations and objects in the X-ray room, and reproduce the complex dose distribution inside the room. However, Monte Carlo simulation is computationally time-consuming and not suited for real-time feedback. Therefore, we developed a new method to calculate the dose distribution with the presence of protective plates instantly using pre-computed directional vectors, named Directional vector-based Quick evaluation method for Protective plates Effects in X-ray fluoroscopy (DQPEX). DQPEX uses a database of dose distributions and directional vectors precomputed by Monte Carlo code, Particle and Heavy Ion Transport code System (PHITS). Assuming the dose at each position was all contributed from radiations in the direction indicated by the directional vector, the dose reduction by the protective plates at the position was determined whether the backtrace line of the directional vector has a intersect with the protective plate or not. With DQPEX, the whole dose distribution in X-ray room with the presence of a protective plate can be computed about 13 s, which is approximately 1/6000 of the full PHITS simulation. Sufficient accuracy of DQPEX to visualize the effect of a protective plate was confirmed by comparing the obtained dose distribution with those obtained by the full PHITS simulation and measurements.</p>\",\"PeriodicalId\":46252,\"journal\":{\"name\":\"Radiological Physics and Technology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-12-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Radiological Physics and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s12194-024-00873-z\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiological Physics and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12194-024-00873-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

摘要

x线透视中医务人员的辐射防护措施之一是使用辐射防护板。一种实时交互工具可以显示辐射剂量随防护板位置变化的分布,这将极大地有助于培训医务人员保护自己免受不必要的辐射照射。蒙特卡罗模拟可以计算出x射线室内辐射与物体之间的个体相互作用,重现室内复杂的剂量分布。然而,蒙特卡罗模拟计算时间长,不适合实时反馈。因此,我们开发了一种利用预先计算的方向向量来计算防护板存在时瞬间剂量分布的新方法,称为基于方向向量的x射线透视防护板效应快速评估方法(DQPEX)。DQPEX使用由蒙特卡罗代码、粒子和重离子输运代码系统(PHITS)预先计算的剂量分布和方向矢量数据库。假设每个位置的剂量全部来自方向矢量所指示方向的辐射,则确定该位置防护板的剂量减少是否与方向矢量的回迹线相交。使用DQPEX,可以计算出防护板存在的x射线室内的整个剂量分布约为13 s,约为完整PHITS模拟的1/6000。通过将得到的剂量分布与完整的PHITS模拟和测量得到的剂量分布进行比较,证实了DQPEX具有足够的精度,可以可视化保护板的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Directional vector-based quick evaluation method for protective plate effects in X-ray fluoroscopy (DQPEX).

One radiation protection measure for medical personnel in X-ray fluoroscopy is using radiation protective plates. A real-time interactive tool visualizing radiation-dose distribution varied with the protective plate position will help greatly to train medical personnel to protect themselves from unnecessary radiation exposure. Monte Carlo simulation can calculate the individual interactions between radiations and objects in the X-ray room, and reproduce the complex dose distribution inside the room. However, Monte Carlo simulation is computationally time-consuming and not suited for real-time feedback. Therefore, we developed a new method to calculate the dose distribution with the presence of protective plates instantly using pre-computed directional vectors, named Directional vector-based Quick evaluation method for Protective plates Effects in X-ray fluoroscopy (DQPEX). DQPEX uses a database of dose distributions and directional vectors precomputed by Monte Carlo code, Particle and Heavy Ion Transport code System (PHITS). Assuming the dose at each position was all contributed from radiations in the direction indicated by the directional vector, the dose reduction by the protective plates at the position was determined whether the backtrace line of the directional vector has a intersect with the protective plate or not. With DQPEX, the whole dose distribution in X-ray room with the presence of a protective plate can be computed about 13 s, which is approximately 1/6000 of the full PHITS simulation. Sufficient accuracy of DQPEX to visualize the effect of a protective plate was confirmed by comparing the obtained dose distribution with those obtained by the full PHITS simulation and measurements.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Radiological Physics and Technology
Radiological Physics and Technology RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING-
CiteScore
3.00
自引率
12.50%
发文量
40
期刊介绍: The purpose of the journal Radiological Physics and Technology is to provide a forum for sharing new knowledge related to research and development in radiological science and technology, including medical physics and radiological technology in diagnostic radiology, nuclear medicine, and radiation therapy among many other radiological disciplines, as well as to contribute to progress and improvement in medical practice and patient health care.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信