Soroush Soleymani, Mohammad Doroudian, Mahdieh Soezi, Ali Beladi, Kiarash Asgari, Aso Mobarakshahi, Aryana Aghaeipour, Ronan Macloughlin
{"title":"人造纳米颗粒治疗脑肿瘤。","authors":"Soroush Soleymani, Mohammad Doroudian, Mahdieh Soezi, Ali Beladi, Kiarash Asgari, Aso Mobarakshahi, Aryana Aghaeipour, Ronan Macloughlin","doi":"10.32604/or.2024.053069","DOIUrl":null,"url":null,"abstract":"<p><p>Brain metastasis and primary glioblastoma multiforme represent the most common and lethal malignant brain tumors. Its median survival time is typically less than a year after diagnosis. One of the major challenges in treating these cancers is the efficiency of the transport of drugs to the central nervous system. The blood-brain barrier is cooperating with advanced stages of malignancy. The blood-brain barrier poses a significant challenge to delivering systemic medications to brain tumors. Nanodrug delivery systems have emerged as promising tools for effectively crossing this barrier. Additionally, the development of smart nanoparticles brings new hope for cancer diagnosis and treatment. These nanoparticles improve drug delivery efficiency, allowing for the creation of targeted and stimuli-responsive delivery methods. This review highlights recent advancements in nanoparticle and smart nanoparticle technologies for brain cancer treatment, exploring the range of nanoparticles under development, their applications, targeting strategies, and the latest progress in enhancing transport across the blood-brain barrier. It also addresses the ongoing challenges and potential benefits of these innovative approaches.</p>","PeriodicalId":19537,"journal":{"name":"Oncology Research","volume":"33 1","pages":"15-26"},"PeriodicalIF":2.0000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11671406/pdf/","citationCount":"0","resultStr":"{\"title\":\"Engendered nanoparticles for treatment of brain tumors.\",\"authors\":\"Soroush Soleymani, Mohammad Doroudian, Mahdieh Soezi, Ali Beladi, Kiarash Asgari, Aso Mobarakshahi, Aryana Aghaeipour, Ronan Macloughlin\",\"doi\":\"10.32604/or.2024.053069\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Brain metastasis and primary glioblastoma multiforme represent the most common and lethal malignant brain tumors. Its median survival time is typically less than a year after diagnosis. One of the major challenges in treating these cancers is the efficiency of the transport of drugs to the central nervous system. The blood-brain barrier is cooperating with advanced stages of malignancy. The blood-brain barrier poses a significant challenge to delivering systemic medications to brain tumors. Nanodrug delivery systems have emerged as promising tools for effectively crossing this barrier. Additionally, the development of smart nanoparticles brings new hope for cancer diagnosis and treatment. These nanoparticles improve drug delivery efficiency, allowing for the creation of targeted and stimuli-responsive delivery methods. This review highlights recent advancements in nanoparticle and smart nanoparticle technologies for brain cancer treatment, exploring the range of nanoparticles under development, their applications, targeting strategies, and the latest progress in enhancing transport across the blood-brain barrier. It also addresses the ongoing challenges and potential benefits of these innovative approaches.</p>\",\"PeriodicalId\":19537,\"journal\":{\"name\":\"Oncology Research\",\"volume\":\"33 1\",\"pages\":\"15-26\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11671406/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Oncology Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.32604/or.2024.053069\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q3\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oncology Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.32604/or.2024.053069","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"ONCOLOGY","Score":null,"Total":0}
Engendered nanoparticles for treatment of brain tumors.
Brain metastasis and primary glioblastoma multiforme represent the most common and lethal malignant brain tumors. Its median survival time is typically less than a year after diagnosis. One of the major challenges in treating these cancers is the efficiency of the transport of drugs to the central nervous system. The blood-brain barrier is cooperating with advanced stages of malignancy. The blood-brain barrier poses a significant challenge to delivering systemic medications to brain tumors. Nanodrug delivery systems have emerged as promising tools for effectively crossing this barrier. Additionally, the development of smart nanoparticles brings new hope for cancer diagnosis and treatment. These nanoparticles improve drug delivery efficiency, allowing for the creation of targeted and stimuli-responsive delivery methods. This review highlights recent advancements in nanoparticle and smart nanoparticle technologies for brain cancer treatment, exploring the range of nanoparticles under development, their applications, targeting strategies, and the latest progress in enhancing transport across the blood-brain barrier. It also addresses the ongoing challenges and potential benefits of these innovative approaches.
期刊介绍:
Oncology Research Featuring Preclinical and Clincal Cancer Therapeutics publishes research of the highest quality that contributes to an understanding of cancer in areas of molecular biology, cell biology, biochemistry, biophysics, genetics, biology, endocrinology, and immunology, as well as studies on the mechanism of action of carcinogens and therapeutic agents, reports dealing with cancer prevention and epidemiology, and clinical trials delineating effective new therapeutic regimens.