Philip Freund, Mike Pauls, Daria Babushkina, Thomas Pickl, Christoph Bannwarth, Thorsten Bach
{"title":"单向氢原子穿梭光化学法对4,7-二氮杂-1-异吲哚酮的脱羧作用","authors":"Philip Freund, Mike Pauls, Daria Babushkina, Thomas Pickl, Christoph Bannwarth, Thorsten Bach","doi":"10.1021/jacs.4c16053","DOIUrl":null,"url":null,"abstract":"By coupling a photochemical and a thermal step, a single chiral catalyst can establish a photostationary state in which the enantiopure form of a chiral compound is favored over its racemate. Following this strategy, 3-substituted 4,7-diaza-1-isoindolones were successfully deracemized (74–98% yield, 86–99% <i>ee</i>) employing 2.5 mol % of a photocatalyst. Key to the success of the reaction is the fact that a chiral benzophenone recruits selectively one enantiomer of the substrate for a photoinduced hydrogen atom transfer. A combination of computational and experimental studies suggests that the hydrogen atom is shuttled via the oxygen atom of the catalyst to the 4-nitrogen atom of the substrate.","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":"35 1","pages":""},"PeriodicalIF":14.4000,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Photochemical Deracemization of 4,7-Diaza-1-isoindolinones by Unidirectional Hydrogen Atom Shuttling\",\"authors\":\"Philip Freund, Mike Pauls, Daria Babushkina, Thomas Pickl, Christoph Bannwarth, Thorsten Bach\",\"doi\":\"10.1021/jacs.4c16053\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"By coupling a photochemical and a thermal step, a single chiral catalyst can establish a photostationary state in which the enantiopure form of a chiral compound is favored over its racemate. Following this strategy, 3-substituted 4,7-diaza-1-isoindolones were successfully deracemized (74–98% yield, 86–99% <i>ee</i>) employing 2.5 mol % of a photocatalyst. Key to the success of the reaction is the fact that a chiral benzophenone recruits selectively one enantiomer of the substrate for a photoinduced hydrogen atom transfer. A combination of computational and experimental studies suggests that the hydrogen atom is shuttled via the oxygen atom of the catalyst to the 4-nitrogen atom of the substrate.\",\"PeriodicalId\":49,\"journal\":{\"name\":\"Journal of the American Chemical Society\",\"volume\":\"35 1\",\"pages\":\"\"},\"PeriodicalIF\":14.4000,\"publicationDate\":\"2024-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the American Chemical Society\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/jacs.4c16053\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jacs.4c16053","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Photochemical Deracemization of 4,7-Diaza-1-isoindolinones by Unidirectional Hydrogen Atom Shuttling
By coupling a photochemical and a thermal step, a single chiral catalyst can establish a photostationary state in which the enantiopure form of a chiral compound is favored over its racemate. Following this strategy, 3-substituted 4,7-diaza-1-isoindolones were successfully deracemized (74–98% yield, 86–99% ee) employing 2.5 mol % of a photocatalyst. Key to the success of the reaction is the fact that a chiral benzophenone recruits selectively one enantiomer of the substrate for a photoinduced hydrogen atom transfer. A combination of computational and experimental studies suggests that the hydrogen atom is shuttled via the oxygen atom of the catalyst to the 4-nitrogen atom of the substrate.
期刊介绍:
The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.