Hadi Zare Khormizi , Mohammad Jafari , Hamidreza Ghafarian Malamiri , Ali Tavili , Hamidreza Keshtkar
{"title":"利用傅立叶级数分析生成晴空条件下MODIS每小时地表温度","authors":"Hadi Zare Khormizi , Mohammad Jafari , Hamidreza Ghafarian Malamiri , Ali Tavili , Hamidreza Keshtkar","doi":"10.1016/j.jag.2024.104341","DOIUrl":null,"url":null,"abstract":"<div><div>Land surface temperature (LST) data with high temporal and spatial resolution are used in many studies, e.g. to assess climate changes, land–atmosphere interactions, surface energy balance, etc. However, clouds and the limitations of geostationary and polar orbiting satellites hinder the collection of high-quality thermal infrared (TIR) data. This research aims to generate hourly LST data from the Moderate Resolution Imaging Spectroradiometer (MODIS) with four daily observations. The Multi-channel Singular Spectrum Analysis (M−SSA) algorithm was used to reconstruct lost data due to clouds in the MODIS annual LST time series. Subsequently, Fourier series analysis was employed to generate hourly LST data based on the four MODIS observations per day. The developed Fourier series model was evaluated using hourly LST data from Meteosat-9 and ground surface soil temperature data at eight different Ameriflux sites. The evaluation of the Fourier series model showed that the Root Mean Square Error (RMSE) and coefficient of determination (R<sup>2</sup>) between the hourly LST data from the Meteosat-9 satellite and the hourly LST data generated by the Fourier series model using four simultaneous MODIS observations averaged 1.70 Kelvin and 0.98, respectively, throughout Iran. For Ameriflux sites, the average RMSE and R2 were 1.15 K and 0.98 between the surface soil temperature data and the surface soil temperature data generated using four simultaneous MODIS observations per day, respectively. Notably, the highest RMSE was observed during sunrise and sunset.</div></div>","PeriodicalId":73423,"journal":{"name":"International journal of applied earth observation and geoinformation : ITC journal","volume":"136 ","pages":"Article 104341"},"PeriodicalIF":7.6000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generating MODIS hourly land surface temperature under clear sky conditions using Fourier series analysis\",\"authors\":\"Hadi Zare Khormizi , Mohammad Jafari , Hamidreza Ghafarian Malamiri , Ali Tavili , Hamidreza Keshtkar\",\"doi\":\"10.1016/j.jag.2024.104341\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Land surface temperature (LST) data with high temporal and spatial resolution are used in many studies, e.g. to assess climate changes, land–atmosphere interactions, surface energy balance, etc. However, clouds and the limitations of geostationary and polar orbiting satellites hinder the collection of high-quality thermal infrared (TIR) data. This research aims to generate hourly LST data from the Moderate Resolution Imaging Spectroradiometer (MODIS) with four daily observations. The Multi-channel Singular Spectrum Analysis (M−SSA) algorithm was used to reconstruct lost data due to clouds in the MODIS annual LST time series. Subsequently, Fourier series analysis was employed to generate hourly LST data based on the four MODIS observations per day. The developed Fourier series model was evaluated using hourly LST data from Meteosat-9 and ground surface soil temperature data at eight different Ameriflux sites. The evaluation of the Fourier series model showed that the Root Mean Square Error (RMSE) and coefficient of determination (R<sup>2</sup>) between the hourly LST data from the Meteosat-9 satellite and the hourly LST data generated by the Fourier series model using four simultaneous MODIS observations averaged 1.70 Kelvin and 0.98, respectively, throughout Iran. For Ameriflux sites, the average RMSE and R2 were 1.15 K and 0.98 between the surface soil temperature data and the surface soil temperature data generated using four simultaneous MODIS observations per day, respectively. Notably, the highest RMSE was observed during sunrise and sunset.</div></div>\",\"PeriodicalId\":73423,\"journal\":{\"name\":\"International journal of applied earth observation and geoinformation : ITC journal\",\"volume\":\"136 \",\"pages\":\"Article 104341\"},\"PeriodicalIF\":7.6000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of applied earth observation and geoinformation : ITC journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S156984322400699X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"REMOTE SENSING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of applied earth observation and geoinformation : ITC journal","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S156984322400699X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"REMOTE SENSING","Score":null,"Total":0}
Generating MODIS hourly land surface temperature under clear sky conditions using Fourier series analysis
Land surface temperature (LST) data with high temporal and spatial resolution are used in many studies, e.g. to assess climate changes, land–atmosphere interactions, surface energy balance, etc. However, clouds and the limitations of geostationary and polar orbiting satellites hinder the collection of high-quality thermal infrared (TIR) data. This research aims to generate hourly LST data from the Moderate Resolution Imaging Spectroradiometer (MODIS) with four daily observations. The Multi-channel Singular Spectrum Analysis (M−SSA) algorithm was used to reconstruct lost data due to clouds in the MODIS annual LST time series. Subsequently, Fourier series analysis was employed to generate hourly LST data based on the four MODIS observations per day. The developed Fourier series model was evaluated using hourly LST data from Meteosat-9 and ground surface soil temperature data at eight different Ameriflux sites. The evaluation of the Fourier series model showed that the Root Mean Square Error (RMSE) and coefficient of determination (R2) between the hourly LST data from the Meteosat-9 satellite and the hourly LST data generated by the Fourier series model using four simultaneous MODIS observations averaged 1.70 Kelvin and 0.98, respectively, throughout Iran. For Ameriflux sites, the average RMSE and R2 were 1.15 K and 0.98 between the surface soil temperature data and the surface soil temperature data generated using four simultaneous MODIS observations per day, respectively. Notably, the highest RMSE was observed during sunrise and sunset.
期刊介绍:
The International Journal of Applied Earth Observation and Geoinformation publishes original papers that utilize earth observation data for natural resource and environmental inventory and management. These data primarily originate from remote sensing platforms, including satellites and aircraft, supplemented by surface and subsurface measurements. Addressing natural resources such as forests, agricultural land, soils, and water, as well as environmental concerns like biodiversity, land degradation, and hazards, the journal explores conceptual and data-driven approaches. It covers geoinformation themes like capturing, databasing, visualization, interpretation, data quality, and spatial uncertainty.