Shuangfei Zhu, Chaowen Yang, Shufen Zheng, Shuhai Zhang, Yahong Chen and Yang Liu
{"title":"取代基对含能材料热裂解机理的影响——以硝基苯化合物的反应分子动力学模拟为例","authors":"Shuangfei Zhu, Chaowen Yang, Shufen Zheng, Shuhai Zhang, Yahong Chen and Yang Liu","doi":"10.1039/D4CP03585B","DOIUrl":null,"url":null,"abstract":"<p >The initial decomposition reactions of 1,3,5-trinitrobenzene (TNB), picric acid (PA), 2,4,6-trinitrotoluene (TNT), 2,4,6-trinitroaniline (TNA) and 2,4,6-trinitrophenylmethylnitramine (Tetryl) were studied using ReaxFF-lg molecular dynamics simulations, and the substituent effect on the thermal decomposition behaviours of nitrobenzene compounds was evaluated through the reactant number, initial decomposition pathway, products and cluster analysis. The results show that the introduction of substituents could promote the decomposition of the reactants, increase the frequency of the nitro–nitrito isomerization reaction and intermolecular H or O atom transfer reaction, and reduce the frequency of the direct nitro dissociation reaction. Notably, these effects were most obvious in the case of TNT. Owing to the introduction of substituents, the number of hydrogen-containing products (HO<small><sub>2</sub></small>N, H<small><sub>2</sub></small>, H<small><sub>2</sub></small>O and NH<small><sub>3</sub></small>) increased. Different functional groups can also lead to variations in the quantities of decomposition products and cluster distribution. The decomposition process of the five nitrobenzenes was examined in detail through the analysis of intermediate products, revealing the distinct influence of the substituent groups. These findings contribute to an enhanced understanding of how different substituent groups influence the energy release mechanisms of energetic compounds.</p>","PeriodicalId":99,"journal":{"name":"Physical Chemistry Chemical Physics","volume":" 5","pages":" 2473-2484"},"PeriodicalIF":2.9000,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The substituent effect on the heat-induced pyrolysis mechanism of energetic materials: a case of reactive molecular dynamics simulations on nitrobenzene compounds\",\"authors\":\"Shuangfei Zhu, Chaowen Yang, Shufen Zheng, Shuhai Zhang, Yahong Chen and Yang Liu\",\"doi\":\"10.1039/D4CP03585B\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The initial decomposition reactions of 1,3,5-trinitrobenzene (TNB), picric acid (PA), 2,4,6-trinitrotoluene (TNT), 2,4,6-trinitroaniline (TNA) and 2,4,6-trinitrophenylmethylnitramine (Tetryl) were studied using ReaxFF-lg molecular dynamics simulations, and the substituent effect on the thermal decomposition behaviours of nitrobenzene compounds was evaluated through the reactant number, initial decomposition pathway, products and cluster analysis. The results show that the introduction of substituents could promote the decomposition of the reactants, increase the frequency of the nitro–nitrito isomerization reaction and intermolecular H or O atom transfer reaction, and reduce the frequency of the direct nitro dissociation reaction. Notably, these effects were most obvious in the case of TNT. Owing to the introduction of substituents, the number of hydrogen-containing products (HO<small><sub>2</sub></small>N, H<small><sub>2</sub></small>, H<small><sub>2</sub></small>O and NH<small><sub>3</sub></small>) increased. Different functional groups can also lead to variations in the quantities of decomposition products and cluster distribution. The decomposition process of the five nitrobenzenes was examined in detail through the analysis of intermediate products, revealing the distinct influence of the substituent groups. These findings contribute to an enhanced understanding of how different substituent groups influence the energy release mechanisms of energetic compounds.</p>\",\"PeriodicalId\":99,\"journal\":{\"name\":\"Physical Chemistry Chemical Physics\",\"volume\":\" 5\",\"pages\":\" 2473-2484\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Chemistry Chemical Physics\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/cp/d4cp03585b\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Chemistry Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/cp/d4cp03585b","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
The substituent effect on the heat-induced pyrolysis mechanism of energetic materials: a case of reactive molecular dynamics simulations on nitrobenzene compounds
The initial decomposition reactions of 1,3,5-trinitrobenzene (TNB), picric acid (PA), 2,4,6-trinitrotoluene (TNT), 2,4,6-trinitroaniline (TNA) and 2,4,6-trinitrophenylmethylnitramine (Tetryl) were studied using ReaxFF-lg molecular dynamics simulations, and the substituent effect on the thermal decomposition behaviours of nitrobenzene compounds was evaluated through the reactant number, initial decomposition pathway, products and cluster analysis. The results show that the introduction of substituents could promote the decomposition of the reactants, increase the frequency of the nitro–nitrito isomerization reaction and intermolecular H or O atom transfer reaction, and reduce the frequency of the direct nitro dissociation reaction. Notably, these effects were most obvious in the case of TNT. Owing to the introduction of substituents, the number of hydrogen-containing products (HO2N, H2, H2O and NH3) increased. Different functional groups can also lead to variations in the quantities of decomposition products and cluster distribution. The decomposition process of the five nitrobenzenes was examined in detail through the analysis of intermediate products, revealing the distinct influence of the substituent groups. These findings contribute to an enhanced understanding of how different substituent groups influence the energy release mechanisms of energetic compounds.
期刊介绍:
Physical Chemistry Chemical Physics (PCCP) is an international journal co-owned by 19 physical chemistry and physics societies from around the world. This journal publishes original, cutting-edge research in physical chemistry, chemical physics and biophysical chemistry. To be suitable for publication in PCCP, articles must include significant innovation and/or insight into physical chemistry; this is the most important criterion that reviewers and Editors will judge against when evaluating submissions.
The journal has a broad scope and welcomes contributions spanning experiment, theory, computation and data science. Topical coverage includes spectroscopy, dynamics, kinetics, statistical mechanics, thermodynamics, electrochemistry, catalysis, surface science, quantum mechanics, quantum computing and machine learning. Interdisciplinary research areas such as polymers and soft matter, materials, nanoscience, energy, surfaces/interfaces, and biophysical chemistry are welcomed if they demonstrate significant innovation and/or insight into physical chemistry. Joined experimental/theoretical studies are particularly appreciated when complementary and based on up-to-date approaches.