{"title":"一种检测细胞间相关性的空间染色质可及性模式的方法","authors":"Xiaoyang Chen, Keyi Li, Xiaoqing Wu, Zhen Li, Qun Jiang, Xuejian Cui, Zijing Gao, Yanhong Wu, Rui Jiang","doi":"10.1186/s13059-024-03458-6","DOIUrl":null,"url":null,"abstract":"Spatial epigenomic technologies enable simultaneous capture of spatial location and chromatin accessibility of cells within tissue slices. Identifying peaks that display spatial variation and cellular heterogeneity is the key analytic task for characterizing the spatial chromatin accessibility landscape of complex tissues. Here, we propose an efficient and iterative model, Descart, for spatially variable peaks identification based on the graph of inter-cellular correlations. Through the comprehensive benchmarking, we demonstrate the superiority of Descart in revealing cellular heterogeneity and capturing tissue structure. Utilizing the graph of inter-cellular correlations, Descart shows its potential to denoise data, identify peak modules, and detect gene-peak interactions.","PeriodicalId":12611,"journal":{"name":"Genome Biology","volume":"25 1","pages":""},"PeriodicalIF":10.1000,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Descart: a method for detecting spatial chromatin accessibility patterns with inter-cellular correlations\",\"authors\":\"Xiaoyang Chen, Keyi Li, Xiaoqing Wu, Zhen Li, Qun Jiang, Xuejian Cui, Zijing Gao, Yanhong Wu, Rui Jiang\",\"doi\":\"10.1186/s13059-024-03458-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Spatial epigenomic technologies enable simultaneous capture of spatial location and chromatin accessibility of cells within tissue slices. Identifying peaks that display spatial variation and cellular heterogeneity is the key analytic task for characterizing the spatial chromatin accessibility landscape of complex tissues. Here, we propose an efficient and iterative model, Descart, for spatially variable peaks identification based on the graph of inter-cellular correlations. Through the comprehensive benchmarking, we demonstrate the superiority of Descart in revealing cellular heterogeneity and capturing tissue structure. Utilizing the graph of inter-cellular correlations, Descart shows its potential to denoise data, identify peak modules, and detect gene-peak interactions.\",\"PeriodicalId\":12611,\"journal\":{\"name\":\"Genome Biology\",\"volume\":\"25 1\",\"pages\":\"\"},\"PeriodicalIF\":10.1000,\"publicationDate\":\"2024-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genome Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s13059-024-03458-6\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genome Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13059-024-03458-6","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Descart: a method for detecting spatial chromatin accessibility patterns with inter-cellular correlations
Spatial epigenomic technologies enable simultaneous capture of spatial location and chromatin accessibility of cells within tissue slices. Identifying peaks that display spatial variation and cellular heterogeneity is the key analytic task for characterizing the spatial chromatin accessibility landscape of complex tissues. Here, we propose an efficient and iterative model, Descart, for spatially variable peaks identification based on the graph of inter-cellular correlations. Through the comprehensive benchmarking, we demonstrate the superiority of Descart in revealing cellular heterogeneity and capturing tissue structure. Utilizing the graph of inter-cellular correlations, Descart shows its potential to denoise data, identify peak modules, and detect gene-peak interactions.
Genome BiologyBiochemistry, Genetics and Molecular Biology-Genetics
CiteScore
21.00
自引率
3.30%
发文量
241
审稿时长
2 months
期刊介绍:
Genome Biology stands as a premier platform for exceptional research across all domains of biology and biomedicine, explored through a genomic and post-genomic lens.
With an impressive impact factor of 12.3 (2022),* the journal secures its position as the 3rd-ranked research journal in the Genetics and Heredity category and the 2nd-ranked research journal in the Biotechnology and Applied Microbiology category by Thomson Reuters. Notably, Genome Biology holds the distinction of being the highest-ranked open-access journal in this category.
Our dedicated team of highly trained in-house Editors collaborates closely with our esteemed Editorial Board of international experts, ensuring the journal remains on the forefront of scientific advances and community standards. Regular engagement with researchers at conferences and institute visits underscores our commitment to staying abreast of the latest developments in the field.