{"title":"使用系统生物学和计算药物设计技术在去势抵抗性前列腺癌中的药物重新定位。","authors":"Javad Rafiee , Khadijeh Jamialahmadi , Mohammad Javad Bazyari , Seyed Hamid Aghaee-Bakhtiari","doi":"10.1016/j.compbiolchem.2024.108329","DOIUrl":null,"url":null,"abstract":"<div><h3>Background and objective</h3><div>Castration-resistant prostate cancer (CRPC) is caused by resistance to androgen deprivation treatment and leads to the death of patients and there is almost no chance of survival. Therefore, finding a cure to overcome CRPC is challenging and important, but discovering a new drug is very time-consuming and expensive. To overcome these problems, we used Drug repositioning (drug repurposing) strategy in this study.</div></div><div><h3>Methods</h3><div>Gene expression data of CRPC and primary prostate samples were extracted from the GEO database to identify DEGs. Pathway enrichment was performed to find the role of DEGs in signaling pathways. To identify hub proteins, the PPI network was reconstructed and analyzed. drug candidates were identified and to select the most effective drug, molecular docking analysis, and molecular dynamics simulation were performed. Then MTT and qRT-PCR tests were performed to check the effectiveness of the selected drug.</div></div><div><h3>Results</h3><div>A total of 152 upregulated DEGs and 343 downregulated DEGs were identified, and after PPI network analysis, IKBKB, SNAP23, MYC, and NOTCH1 genes were introduced as hubs. drug candidates for IKBKB were identified and by examining the results of docking screening and molecular dynamics, sulfasalazine was selected as the most effective drug. Laboratory analyses proved the effectiveness of this drug and a decrease in the expression of all target genes was observed.</div></div><div><h3>Conclusion</h3><div>In this study, IKBKB key protein were identified in CRPC, and sulfasalazine was selected as a suitable candidate for drug repositioning and its effectiveness was confirmed through tests.</div></div>","PeriodicalId":10616,"journal":{"name":"Computational Biology and Chemistry","volume":"115 ","pages":"Article 108329"},"PeriodicalIF":2.6000,"publicationDate":"2024-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Drug repositioning in castration-resistant prostate cancer using systems biology and computational drug design techniques\",\"authors\":\"Javad Rafiee , Khadijeh Jamialahmadi , Mohammad Javad Bazyari , Seyed Hamid Aghaee-Bakhtiari\",\"doi\":\"10.1016/j.compbiolchem.2024.108329\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background and objective</h3><div>Castration-resistant prostate cancer (CRPC) is caused by resistance to androgen deprivation treatment and leads to the death of patients and there is almost no chance of survival. Therefore, finding a cure to overcome CRPC is challenging and important, but discovering a new drug is very time-consuming and expensive. To overcome these problems, we used Drug repositioning (drug repurposing) strategy in this study.</div></div><div><h3>Methods</h3><div>Gene expression data of CRPC and primary prostate samples were extracted from the GEO database to identify DEGs. Pathway enrichment was performed to find the role of DEGs in signaling pathways. To identify hub proteins, the PPI network was reconstructed and analyzed. drug candidates were identified and to select the most effective drug, molecular docking analysis, and molecular dynamics simulation were performed. Then MTT and qRT-PCR tests were performed to check the effectiveness of the selected drug.</div></div><div><h3>Results</h3><div>A total of 152 upregulated DEGs and 343 downregulated DEGs were identified, and after PPI network analysis, IKBKB, SNAP23, MYC, and NOTCH1 genes were introduced as hubs. drug candidates for IKBKB were identified and by examining the results of docking screening and molecular dynamics, sulfasalazine was selected as the most effective drug. Laboratory analyses proved the effectiveness of this drug and a decrease in the expression of all target genes was observed.</div></div><div><h3>Conclusion</h3><div>In this study, IKBKB key protein were identified in CRPC, and sulfasalazine was selected as a suitable candidate for drug repositioning and its effectiveness was confirmed through tests.</div></div>\",\"PeriodicalId\":10616,\"journal\":{\"name\":\"Computational Biology and Chemistry\",\"volume\":\"115 \",\"pages\":\"Article 108329\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-12-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Biology and Chemistry\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1476927124003177\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Biology and Chemistry","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1476927124003177","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
Drug repositioning in castration-resistant prostate cancer using systems biology and computational drug design techniques
Background and objective
Castration-resistant prostate cancer (CRPC) is caused by resistance to androgen deprivation treatment and leads to the death of patients and there is almost no chance of survival. Therefore, finding a cure to overcome CRPC is challenging and important, but discovering a new drug is very time-consuming and expensive. To overcome these problems, we used Drug repositioning (drug repurposing) strategy in this study.
Methods
Gene expression data of CRPC and primary prostate samples were extracted from the GEO database to identify DEGs. Pathway enrichment was performed to find the role of DEGs in signaling pathways. To identify hub proteins, the PPI network was reconstructed and analyzed. drug candidates were identified and to select the most effective drug, molecular docking analysis, and molecular dynamics simulation were performed. Then MTT and qRT-PCR tests were performed to check the effectiveness of the selected drug.
Results
A total of 152 upregulated DEGs and 343 downregulated DEGs were identified, and after PPI network analysis, IKBKB, SNAP23, MYC, and NOTCH1 genes were introduced as hubs. drug candidates for IKBKB were identified and by examining the results of docking screening and molecular dynamics, sulfasalazine was selected as the most effective drug. Laboratory analyses proved the effectiveness of this drug and a decrease in the expression of all target genes was observed.
Conclusion
In this study, IKBKB key protein were identified in CRPC, and sulfasalazine was selected as a suitable candidate for drug repositioning and its effectiveness was confirmed through tests.
期刊介绍:
Computational Biology and Chemistry publishes original research papers and review articles in all areas of computational life sciences. High quality research contributions with a major computational component in the areas of nucleic acid and protein sequence research, molecular evolution, molecular genetics (functional genomics and proteomics), theory and practice of either biology-specific or chemical-biology-specific modeling, and structural biology of nucleic acids and proteins are particularly welcome. Exceptionally high quality research work in bioinformatics, systems biology, ecology, computational pharmacology, metabolism, biomedical engineering, epidemiology, and statistical genetics will also be considered.
Given their inherent uncertainty, protein modeling and molecular docking studies should be thoroughly validated. In the absence of experimental results for validation, the use of molecular dynamics simulations along with detailed free energy calculations, for example, should be used as complementary techniques to support the major conclusions. Submissions of premature modeling exercises without additional biological insights will not be considered.
Review articles will generally be commissioned by the editors and should not be submitted to the journal without explicit invitation. However prospective authors are welcome to send a brief (one to three pages) synopsis, which will be evaluated by the editors.