{"title":"重新考虑大量自噬的选择性:货物搭便车指定货物降解。","authors":"Eigo Takeda, Alexander I May, Yoshinori Ohsumi","doi":"10.1080/15548627.2024.2447209","DOIUrl":null,"url":null,"abstract":"<p><p>Bulk macroautophagy/autophagy, typically induced by starvation, is generally thought to isolate cytosolic components for degradation in a non-selective manner. Despite the fundamental nature of the eukaryotic degradation pathway, the question of what cargo is isolated by autophagy has remained unaddressed for over 30 years. We recently employed mass spectrometry to analyze the contents of isolated autophagic bodies. In the process of these experiments, we uncovered Hab1 (Highly enriched in Autophagic Bodies 1), a novel protein that is delivered extremely preferentially via autophagy. We report that Hab1 is a novel receptor protein, the N-terminus of which binds Atg8-PE, whereas the C-terminus binds ribosomes. Surprisingly, detailed biochemical and microscopic analyses revealed that ribosome-bound Hab1 is preferentially delivered to the vacuole by \"'hitchhiking'\" on phagophores/isolation membranes that form during bulk autophagy. This is a completely different mechanism of cargo selection that differs from previous descriptions of selective autophagy, in which the cargo-specific receptor proteins initiate phagophore membrane formation via scaffold proteins such as Atg11. We propose that cargo hitchhiking allows for the specification of cargo during bulk autophagy, which is otherwise a non-selective process.</p>","PeriodicalId":93893,"journal":{"name":"Autophagy","volume":" ","pages":"910-911"},"PeriodicalIF":0.0000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11925106/pdf/","citationCount":"0","resultStr":"{\"title\":\"Reconsidering the selectivity of bulk autophagy: cargo hitchhiking specifies cargo for degradation.\",\"authors\":\"Eigo Takeda, Alexander I May, Yoshinori Ohsumi\",\"doi\":\"10.1080/15548627.2024.2447209\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Bulk macroautophagy/autophagy, typically induced by starvation, is generally thought to isolate cytosolic components for degradation in a non-selective manner. Despite the fundamental nature of the eukaryotic degradation pathway, the question of what cargo is isolated by autophagy has remained unaddressed for over 30 years. We recently employed mass spectrometry to analyze the contents of isolated autophagic bodies. In the process of these experiments, we uncovered Hab1 (Highly enriched in Autophagic Bodies 1), a novel protein that is delivered extremely preferentially via autophagy. We report that Hab1 is a novel receptor protein, the N-terminus of which binds Atg8-PE, whereas the C-terminus binds ribosomes. Surprisingly, detailed biochemical and microscopic analyses revealed that ribosome-bound Hab1 is preferentially delivered to the vacuole by \\\"'hitchhiking'\\\" on phagophores/isolation membranes that form during bulk autophagy. This is a completely different mechanism of cargo selection that differs from previous descriptions of selective autophagy, in which the cargo-specific receptor proteins initiate phagophore membrane formation via scaffold proteins such as Atg11. We propose that cargo hitchhiking allows for the specification of cargo during bulk autophagy, which is otherwise a non-selective process.</p>\",\"PeriodicalId\":93893,\"journal\":{\"name\":\"Autophagy\",\"volume\":\" \",\"pages\":\"910-911\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11925106/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Autophagy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/15548627.2024.2447209\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/11 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Autophagy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/15548627.2024.2447209","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/11 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
大量巨噬/自噬,通常由饥饿诱导,通常被认为是非选择性地分离细胞质成分进行降解。然而,尚未对散装自噬货物进行详细的分析。我们最近用质谱法分析了分离的自噬体的成分。在这个过程中,我们发现了一种新的蛋白Hab1 (Highly enrichment In Autophagic Bodies 1),它通过自噬优先递送。Hab1是一种受体蛋白,分别在其N端和c端结合Atg8-PE和核糖体。我们发现核糖体结合的Hab1优先通过“搭便车”的方式传递到液泡中,这种方式是在大量自噬过程中形成的吞噬细胞/隔离膜上。这种搭便车机制赋予了自体自噬的选择性。
Reconsidering the selectivity of bulk autophagy: cargo hitchhiking specifies cargo for degradation.
Bulk macroautophagy/autophagy, typically induced by starvation, is generally thought to isolate cytosolic components for degradation in a non-selective manner. Despite the fundamental nature of the eukaryotic degradation pathway, the question of what cargo is isolated by autophagy has remained unaddressed for over 30 years. We recently employed mass spectrometry to analyze the contents of isolated autophagic bodies. In the process of these experiments, we uncovered Hab1 (Highly enriched in Autophagic Bodies 1), a novel protein that is delivered extremely preferentially via autophagy. We report that Hab1 is a novel receptor protein, the N-terminus of which binds Atg8-PE, whereas the C-terminus binds ribosomes. Surprisingly, detailed biochemical and microscopic analyses revealed that ribosome-bound Hab1 is preferentially delivered to the vacuole by "'hitchhiking'" on phagophores/isolation membranes that form during bulk autophagy. This is a completely different mechanism of cargo selection that differs from previous descriptions of selective autophagy, in which the cargo-specific receptor proteins initiate phagophore membrane formation via scaffold proteins such as Atg11. We propose that cargo hitchhiking allows for the specification of cargo during bulk autophagy, which is otherwise a non-selective process.