Mehdi Astaraki , Wille Häger , Marta Lazzeroni , Iuliana Toma-Dasu
{"title":"基于肿瘤侵袭模型的胶质母细胞瘤治疗结果预测的放射组学和深度学习模型。","authors":"Mehdi Astaraki , Wille Häger , Marta Lazzeroni , Iuliana Toma-Dasu","doi":"10.1016/j.ejmp.2024.104881","DOIUrl":null,"url":null,"abstract":"<div><h3>Purpose</h3><div>We investigate the feasibility of using a biophysically guided approach for delineating the Clinical Target Volume (CTV) in Glioblastoma Multiforme (GBM) by evaluating its impact on the treatment outcomes, specifically Overall Survival (OS) time.</div></div><div><h3>Methods</h3><div>An established reaction–diffusion model was employed to simulate the spatiotemporal evolution of cancerous regions in T1-MRI images of GBM patients. The effects of the parameters of this model on the simulated tumor borders were quantified and the optimal values were used to estimate the distribution of infiltrative cells (CTVmodel). Radiomics and deep learning models were examined to predict the OS time by analyzing the GTV, clinical CTV, and CTVmodel.</div></div><div><h3>Results</h3><div>The study involves 126 subjects for model development and 62 independent subjects for testing. Evaluation of the proposed approach demonstrates comparable predictive power for OS time that is achieved with the clinically defined CTV. Specifically, for the binary survival prediction, short vs. long time, the proposed CTVmodel<!--> <!-->resulted in improvements of prognostic power, in terms of AUROC, both for the validation (0.77 from 0.75) and the testing (0.73 from 0.71) set. Quantitative comparisons for three-class prediction and survival regression models exhibited a similar trend of comparable performance.</div></div><div><h3>Conclusion</h3><div>The findings highlight the potential of biophysical modeling for estimating and incorporating the spread of infiltrating cells into CTV delineation. Further clinical investigations are required to validate the clinical efficacy.</div></div>","PeriodicalId":56092,"journal":{"name":"Physica Medica-European Journal of Medical Physics","volume":"129 ","pages":"Article 104881"},"PeriodicalIF":3.3000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Radiomics and deep learning models for glioblastoma treatment outcome prediction based on tumor invasion modeling\",\"authors\":\"Mehdi Astaraki , Wille Häger , Marta Lazzeroni , Iuliana Toma-Dasu\",\"doi\":\"10.1016/j.ejmp.2024.104881\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Purpose</h3><div>We investigate the feasibility of using a biophysically guided approach for delineating the Clinical Target Volume (CTV) in Glioblastoma Multiforme (GBM) by evaluating its impact on the treatment outcomes, specifically Overall Survival (OS) time.</div></div><div><h3>Methods</h3><div>An established reaction–diffusion model was employed to simulate the spatiotemporal evolution of cancerous regions in T1-MRI images of GBM patients. The effects of the parameters of this model on the simulated tumor borders were quantified and the optimal values were used to estimate the distribution of infiltrative cells (CTVmodel). Radiomics and deep learning models were examined to predict the OS time by analyzing the GTV, clinical CTV, and CTVmodel.</div></div><div><h3>Results</h3><div>The study involves 126 subjects for model development and 62 independent subjects for testing. Evaluation of the proposed approach demonstrates comparable predictive power for OS time that is achieved with the clinically defined CTV. Specifically, for the binary survival prediction, short vs. long time, the proposed CTVmodel<!--> <!-->resulted in improvements of prognostic power, in terms of AUROC, both for the validation (0.77 from 0.75) and the testing (0.73 from 0.71) set. Quantitative comparisons for three-class prediction and survival regression models exhibited a similar trend of comparable performance.</div></div><div><h3>Conclusion</h3><div>The findings highlight the potential of biophysical modeling for estimating and incorporating the spread of infiltrating cells into CTV delineation. Further clinical investigations are required to validate the clinical efficacy.</div></div>\",\"PeriodicalId\":56092,\"journal\":{\"name\":\"Physica Medica-European Journal of Medical Physics\",\"volume\":\"129 \",\"pages\":\"Article 104881\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physica Medica-European Journal of Medical Physics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1120179724013498\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica Medica-European Journal of Medical Physics","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1120179724013498","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
Radiomics and deep learning models for glioblastoma treatment outcome prediction based on tumor invasion modeling
Purpose
We investigate the feasibility of using a biophysically guided approach for delineating the Clinical Target Volume (CTV) in Glioblastoma Multiforme (GBM) by evaluating its impact on the treatment outcomes, specifically Overall Survival (OS) time.
Methods
An established reaction–diffusion model was employed to simulate the spatiotemporal evolution of cancerous regions in T1-MRI images of GBM patients. The effects of the parameters of this model on the simulated tumor borders were quantified and the optimal values were used to estimate the distribution of infiltrative cells (CTVmodel). Radiomics and deep learning models were examined to predict the OS time by analyzing the GTV, clinical CTV, and CTVmodel.
Results
The study involves 126 subjects for model development and 62 independent subjects for testing. Evaluation of the proposed approach demonstrates comparable predictive power for OS time that is achieved with the clinically defined CTV. Specifically, for the binary survival prediction, short vs. long time, the proposed CTVmodel resulted in improvements of prognostic power, in terms of AUROC, both for the validation (0.77 from 0.75) and the testing (0.73 from 0.71) set. Quantitative comparisons for three-class prediction and survival regression models exhibited a similar trend of comparable performance.
Conclusion
The findings highlight the potential of biophysical modeling for estimating and incorporating the spread of infiltrating cells into CTV delineation. Further clinical investigations are required to validate the clinical efficacy.
期刊介绍:
Physica Medica, European Journal of Medical Physics, publishing with Elsevier from 2007, provides an international forum for research and reviews on the following main topics:
Medical Imaging
Radiation Therapy
Radiation Protection
Measuring Systems and Signal Processing
Education and training in Medical Physics
Professional issues in Medical Physics.