Wei Zhang, Weiming Zeng, Hongyu Chen, Jie Liu, Hongjie Yan, Kaile Zhang, Ran Tao, Wai Ting Siok, Nizhuan Wang
{"title":"STANet:一种基于小而不平衡FMRI数据的抑郁症时空聚合网络。","authors":"Wei Zhang, Weiming Zeng, Hongyu Chen, Jie Liu, Hongjie Yan, Kaile Zhang, Ran Tao, Wai Ting Siok, Nizhuan Wang","doi":"10.3390/tomography10120138","DOIUrl":null,"url":null,"abstract":"<p><p><b>Background</b>: Early diagnosis of depression is crucial for effective treatment and suicide prevention. Traditional methods rely on self-report questionnaires and clinical assessments, lacking objective biomarkers. Combining functional magnetic resonance imaging (fMRI) with artificial intelligence can enhance depression diagnosis using neuroimaging indicators, but depression-specific fMRI datasets are often small and imbalanced, posing challenges for classification models. <b>New Method</b>: We propose the Spatio-Temporal Aggregation Network (STANet) for diagnosing depression by integrating convolutional neural networks (CNN) and recurrent neural networks (RNN) to capture both temporal and spatial features of brain activity. STANet comprises the following steps: (1) Aggregate spatio-temporal information via independent component analysis (ICA). (2) Utilize multi-scale deep convolution to capture detailed features. (3) Balance data using the synthetic minority over-sampling technique (SMOTE) to generate new samples for minority classes. (4) Employ the attention-Fourier gate recurrent unit (AFGRU) classifier to capture long-term dependencies, with an adaptive weight assignment mechanism to enhance model generalization. <b>Results</b>: STANet achieves superior depression diagnostic performance, with 82.38% accuracy and a 90.72% AUC. The Spatio-Temporal Feature Aggregation module enhances classification by capturing deeper features at multiple scales. The AFGRU classifier, with adaptive weights and a stacked Gated Recurrent Unit (GRU), attains higher accuracy and AUC. SMOTE outperforms other oversampling methods. Additionally, spatio-temporal aggregated features achieve better performance compared to using only temporal or spatial features. <b>Comparison with existing methods</b>: STANet significantly outperforms traditional classifiers, deep learning classifiers, and functional connectivity-based classifiers. <b>Conclusions</b>: The successful performance of STANet contributes to enhancing the diagnosis and treatment assessment of depression in clinical settings on imbalanced and small fMRI.</p>","PeriodicalId":51330,"journal":{"name":"Tomography","volume":"10 12","pages":"1895-1914"},"PeriodicalIF":2.2000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11679224/pdf/","citationCount":"0","resultStr":"{\"title\":\"STANet: A Novel Spatio-Temporal Aggregation Network for Depression Classification with Small and Unbalanced FMRI Data.\",\"authors\":\"Wei Zhang, Weiming Zeng, Hongyu Chen, Jie Liu, Hongjie Yan, Kaile Zhang, Ran Tao, Wai Ting Siok, Nizhuan Wang\",\"doi\":\"10.3390/tomography10120138\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><b>Background</b>: Early diagnosis of depression is crucial for effective treatment and suicide prevention. Traditional methods rely on self-report questionnaires and clinical assessments, lacking objective biomarkers. Combining functional magnetic resonance imaging (fMRI) with artificial intelligence can enhance depression diagnosis using neuroimaging indicators, but depression-specific fMRI datasets are often small and imbalanced, posing challenges for classification models. <b>New Method</b>: We propose the Spatio-Temporal Aggregation Network (STANet) for diagnosing depression by integrating convolutional neural networks (CNN) and recurrent neural networks (RNN) to capture both temporal and spatial features of brain activity. STANet comprises the following steps: (1) Aggregate spatio-temporal information via independent component analysis (ICA). (2) Utilize multi-scale deep convolution to capture detailed features. (3) Balance data using the synthetic minority over-sampling technique (SMOTE) to generate new samples for minority classes. (4) Employ the attention-Fourier gate recurrent unit (AFGRU) classifier to capture long-term dependencies, with an adaptive weight assignment mechanism to enhance model generalization. <b>Results</b>: STANet achieves superior depression diagnostic performance, with 82.38% accuracy and a 90.72% AUC. The Spatio-Temporal Feature Aggregation module enhances classification by capturing deeper features at multiple scales. The AFGRU classifier, with adaptive weights and a stacked Gated Recurrent Unit (GRU), attains higher accuracy and AUC. SMOTE outperforms other oversampling methods. Additionally, spatio-temporal aggregated features achieve better performance compared to using only temporal or spatial features. <b>Comparison with existing methods</b>: STANet significantly outperforms traditional classifiers, deep learning classifiers, and functional connectivity-based classifiers. <b>Conclusions</b>: The successful performance of STANet contributes to enhancing the diagnosis and treatment assessment of depression in clinical settings on imbalanced and small fMRI.</p>\",\"PeriodicalId\":51330,\"journal\":{\"name\":\"Tomography\",\"volume\":\"10 12\",\"pages\":\"1895-1914\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11679224/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tomography\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3390/tomography10120138\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tomography","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/tomography10120138","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
STANet: A Novel Spatio-Temporal Aggregation Network for Depression Classification with Small and Unbalanced FMRI Data.
Background: Early diagnosis of depression is crucial for effective treatment and suicide prevention. Traditional methods rely on self-report questionnaires and clinical assessments, lacking objective biomarkers. Combining functional magnetic resonance imaging (fMRI) with artificial intelligence can enhance depression diagnosis using neuroimaging indicators, but depression-specific fMRI datasets are often small and imbalanced, posing challenges for classification models. New Method: We propose the Spatio-Temporal Aggregation Network (STANet) for diagnosing depression by integrating convolutional neural networks (CNN) and recurrent neural networks (RNN) to capture both temporal and spatial features of brain activity. STANet comprises the following steps: (1) Aggregate spatio-temporal information via independent component analysis (ICA). (2) Utilize multi-scale deep convolution to capture detailed features. (3) Balance data using the synthetic minority over-sampling technique (SMOTE) to generate new samples for minority classes. (4) Employ the attention-Fourier gate recurrent unit (AFGRU) classifier to capture long-term dependencies, with an adaptive weight assignment mechanism to enhance model generalization. Results: STANet achieves superior depression diagnostic performance, with 82.38% accuracy and a 90.72% AUC. The Spatio-Temporal Feature Aggregation module enhances classification by capturing deeper features at multiple scales. The AFGRU classifier, with adaptive weights and a stacked Gated Recurrent Unit (GRU), attains higher accuracy and AUC. SMOTE outperforms other oversampling methods. Additionally, spatio-temporal aggregated features achieve better performance compared to using only temporal or spatial features. Comparison with existing methods: STANet significantly outperforms traditional classifiers, deep learning classifiers, and functional connectivity-based classifiers. Conclusions: The successful performance of STANet contributes to enhancing the diagnosis and treatment assessment of depression in clinical settings on imbalanced and small fMRI.
TomographyMedicine-Radiology, Nuclear Medicine and Imaging
CiteScore
2.70
自引率
10.50%
发文量
222
期刊介绍:
TomographyTM publishes basic (technical and pre-clinical) and clinical scientific articles which involve the advancement of imaging technologies. Tomography encompasses studies that use single or multiple imaging modalities including for example CT, US, PET, SPECT, MR and hyperpolarization technologies, as well as optical modalities (i.e. bioluminescence, photoacoustic, endomicroscopy, fiber optic imaging and optical computed tomography) in basic sciences, engineering, preclinical and clinical medicine.
Tomography also welcomes studies involving exploration and refinement of contrast mechanisms and image-derived metrics within and across modalities toward the development of novel imaging probes for image-based feedback and intervention. The use of imaging in biology and medicine provides unparalleled opportunities to noninvasively interrogate tissues to obtain real-time dynamic and quantitative information required for diagnosis and response to interventions and to follow evolving pathological conditions. As multi-modal studies and the complexities of imaging technologies themselves are ever increasing to provide advanced information to scientists and clinicians.
Tomography provides a unique publication venue allowing investigators the opportunity to more precisely communicate integrated findings related to the diverse and heterogeneous features associated with underlying anatomical, physiological, functional, metabolic and molecular genetic activities of normal and diseased tissue. Thus Tomography publishes peer-reviewed articles which involve the broad use of imaging of any tissue and disease type including both preclinical and clinical investigations. In addition, hardware/software along with chemical and molecular probe advances are welcome as they are deemed to significantly contribute towards the long-term goal of improving the overall impact of imaging on scientific and clinical discovery.