基于深度学习的加速度感知轨迹预测。

IF 2.7 Q3 IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY
Ali Asghar Sharifi, Ali Zoljodi, Masoud Daneshtalab
{"title":"基于深度学习的加速度感知轨迹预测。","authors":"Ali Asghar Sharifi, Ali Zoljodi, Masoud Daneshtalab","doi":"10.3390/jimaging10120321","DOIUrl":null,"url":null,"abstract":"<p><p>As the demand for autonomous driving (AD) systems has increased, the enhancement of their safety has become critically important. A fundamental capability of AD systems is object detection and trajectory forecasting of vehicles and pedestrians around the ego-vehicle, which is essential for preventing potential collisions. This study introduces the Deep learning-based Acceleration-aware Trajectory forecasting (DAT) model, a deep learning-based approach for object detection and trajectory forecasting, utilizing raw sensor measurements. DAT is an end-to-end model that processes sequential sensor data to detect objects and forecasts their future trajectories at each time step. The core innovation of DAT lies in its novel forecasting module, which leverages acceleration data to enhance trajectory forecasting, leading to the consideration of a variety of agent motion models. We propose a robust and innovative method for estimating ground-truth acceleration for objects, along with an object detector that predicts acceleration attributes for each detected object and a novel method for trajectory forecasting. DAT is trained and evaluated on the NuScenes dataset, demonstrating its empirical effectiveness through extensive experiments. The results indicate that DAT significantly surpasses state-of-the-art methods, particularly in enhancing forecasting accuracy for objects exhibiting both linear and nonlinear motion patterns, achieving up to a 2× improvement. This advancement highlights the critical role of incorporating acceleration data into predictive models, representing a substantial step forward in the development of safer autonomous driving systems.</p>","PeriodicalId":37035,"journal":{"name":"Journal of Imaging","volume":"10 12","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11677107/pdf/","citationCount":"0","resultStr":"{\"title\":\"DAT: Deep Learning-Based Acceleration-Aware Trajectory Forecasting.\",\"authors\":\"Ali Asghar Sharifi, Ali Zoljodi, Masoud Daneshtalab\",\"doi\":\"10.3390/jimaging10120321\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>As the demand for autonomous driving (AD) systems has increased, the enhancement of their safety has become critically important. A fundamental capability of AD systems is object detection and trajectory forecasting of vehicles and pedestrians around the ego-vehicle, which is essential for preventing potential collisions. This study introduces the Deep learning-based Acceleration-aware Trajectory forecasting (DAT) model, a deep learning-based approach for object detection and trajectory forecasting, utilizing raw sensor measurements. DAT is an end-to-end model that processes sequential sensor data to detect objects and forecasts their future trajectories at each time step. The core innovation of DAT lies in its novel forecasting module, which leverages acceleration data to enhance trajectory forecasting, leading to the consideration of a variety of agent motion models. We propose a robust and innovative method for estimating ground-truth acceleration for objects, along with an object detector that predicts acceleration attributes for each detected object and a novel method for trajectory forecasting. DAT is trained and evaluated on the NuScenes dataset, demonstrating its empirical effectiveness through extensive experiments. The results indicate that DAT significantly surpasses state-of-the-art methods, particularly in enhancing forecasting accuracy for objects exhibiting both linear and nonlinear motion patterns, achieving up to a 2× improvement. This advancement highlights the critical role of incorporating acceleration data into predictive models, representing a substantial step forward in the development of safer autonomous driving systems.</p>\",\"PeriodicalId\":37035,\"journal\":{\"name\":\"Journal of Imaging\",\"volume\":\"10 12\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11677107/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Imaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/jimaging10120321\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/jimaging10120321","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

随着对自动驾驶(AD)系统需求的增加,提高其安全性变得至关重要。自动驾驶系统的一项基本能力是自动驾驶汽车周围的车辆和行人的目标检测和轨迹预测,这对于防止潜在的碰撞至关重要。本研究介绍了基于深度学习的加速度感知轨迹预测(DAT)模型,这是一种基于深度学习的目标检测和轨迹预测方法,利用原始传感器测量。DAT是一种端到端模型,它处理顺序传感器数据来检测物体,并在每个时间步长预测它们的未来轨迹。DAT的核心创新在于其新颖的预测模块,利用加速度数据增强轨迹预测,从而考虑多种智能体运动模型。我们提出了一种鲁棒和创新的方法来估计物体的真地加速度,以及一个物体检测器来预测每个被检测物体的加速度属性和一种新的轨迹预测方法。在NuScenes数据集上对数据进行了训练和评估,并通过大量实验证明了其经验有效性。结果表明,DAT显着超过了最先进的方法,特别是在提高线性和非线性运动模式物体的预测精度方面,实现了高达2倍的改进。这一进展凸显了将加速数据纳入预测模型的关键作用,代表着在开发更安全的自动驾驶系统方面迈出了实质性的一步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
DAT: Deep Learning-Based Acceleration-Aware Trajectory Forecasting.

As the demand for autonomous driving (AD) systems has increased, the enhancement of their safety has become critically important. A fundamental capability of AD systems is object detection and trajectory forecasting of vehicles and pedestrians around the ego-vehicle, which is essential for preventing potential collisions. This study introduces the Deep learning-based Acceleration-aware Trajectory forecasting (DAT) model, a deep learning-based approach for object detection and trajectory forecasting, utilizing raw sensor measurements. DAT is an end-to-end model that processes sequential sensor data to detect objects and forecasts their future trajectories at each time step. The core innovation of DAT lies in its novel forecasting module, which leverages acceleration data to enhance trajectory forecasting, leading to the consideration of a variety of agent motion models. We propose a robust and innovative method for estimating ground-truth acceleration for objects, along with an object detector that predicts acceleration attributes for each detected object and a novel method for trajectory forecasting. DAT is trained and evaluated on the NuScenes dataset, demonstrating its empirical effectiveness through extensive experiments. The results indicate that DAT significantly surpasses state-of-the-art methods, particularly in enhancing forecasting accuracy for objects exhibiting both linear and nonlinear motion patterns, achieving up to a 2× improvement. This advancement highlights the critical role of incorporating acceleration data into predictive models, representing a substantial step forward in the development of safer autonomous driving systems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Imaging
Journal of Imaging Medicine-Radiology, Nuclear Medicine and Imaging
CiteScore
5.90
自引率
6.20%
发文量
303
审稿时长
7 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信