Julien Songeon, François Lazeyras, Thomas Agius, Oscar Dabrowski, Raphael Ruttimann, Christian Toso, Alban Longchamp, Antoine Klauser, Sebastien Courvoisier
{"title":"通过压缩感知加速与低秩重构相结合改善了磷MRSI采集。","authors":"Julien Songeon, François Lazeyras, Thomas Agius, Oscar Dabrowski, Raphael Ruttimann, Christian Toso, Alban Longchamp, Antoine Klauser, Sebastien Courvoisier","doi":"10.1007/s10334-024-01218-y","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>Phosphorus-31 magnetic resonance spectroscopic imaging (<sup>31</sup>P-MRSI) is a non-invasive tool for assessing cellular high-energy metabolism in-vivo. However, its acquisition suffers from a low sensitivity, which necessitates large voxel sizes or multiple averages to achieve an acceptable signal-to-noise ratio (SNR), resulting in long scan times.</p><p><strong>Materials and methods: </strong>To overcome these limitations, we propose an acquisition and reconstruction scheme for FID-MRSI sequences. Specifically, we employed Compressed Sensing (CS) and Low-Rank (LR) with Total Generalized Variation (TGV) regularization in a combined CS-LR framework. Additionally, we used a novel approach to k-space undersampling that utilizes distinct pseudo-random patterns for each average. To evaluate the proposed method's performance, we performed a retrospective analysis on healthy volunteers' brains and ex-vivo perfused kidneys.</p><p><strong>Results: </strong>The presented method effectively improves the SNR two-to-threefold while preserving spectral and spatial quality even with threefold acceleration. We were able to recover signal attenuation of anatomical information, and the SNR improvement was obtained while maintaining the metabolites peaks linewidth.</p><p><strong>Conclusions: </strong>We presented a novel combined CS-LR acceleration and reconstruction method for FID-MRSI sequences, utilizing a unique approach to k-space undersampling. Our proposed method has demonstrated promising results in enhancing the SNR making it applicable for reducing acquisition time.</p>","PeriodicalId":18067,"journal":{"name":"Magnetic Resonance Materials in Physics, Biology and Medicine","volume":" ","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improved phosphorus MRSI acquisition through compressed sensing acceleration combined with low-rank reconstruction.\",\"authors\":\"Julien Songeon, François Lazeyras, Thomas Agius, Oscar Dabrowski, Raphael Ruttimann, Christian Toso, Alban Longchamp, Antoine Klauser, Sebastien Courvoisier\",\"doi\":\"10.1007/s10334-024-01218-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objectives: </strong>Phosphorus-31 magnetic resonance spectroscopic imaging (<sup>31</sup>P-MRSI) is a non-invasive tool for assessing cellular high-energy metabolism in-vivo. However, its acquisition suffers from a low sensitivity, which necessitates large voxel sizes or multiple averages to achieve an acceptable signal-to-noise ratio (SNR), resulting in long scan times.</p><p><strong>Materials and methods: </strong>To overcome these limitations, we propose an acquisition and reconstruction scheme for FID-MRSI sequences. Specifically, we employed Compressed Sensing (CS) and Low-Rank (LR) with Total Generalized Variation (TGV) regularization in a combined CS-LR framework. Additionally, we used a novel approach to k-space undersampling that utilizes distinct pseudo-random patterns for each average. To evaluate the proposed method's performance, we performed a retrospective analysis on healthy volunteers' brains and ex-vivo perfused kidneys.</p><p><strong>Results: </strong>The presented method effectively improves the SNR two-to-threefold while preserving spectral and spatial quality even with threefold acceleration. We were able to recover signal attenuation of anatomical information, and the SNR improvement was obtained while maintaining the metabolites peaks linewidth.</p><p><strong>Conclusions: </strong>We presented a novel combined CS-LR acceleration and reconstruction method for FID-MRSI sequences, utilizing a unique approach to k-space undersampling. Our proposed method has demonstrated promising results in enhancing the SNR making it applicable for reducing acquisition time.</p>\",\"PeriodicalId\":18067,\"journal\":{\"name\":\"Magnetic Resonance Materials in Physics, Biology and Medicine\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-12-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Magnetic Resonance Materials in Physics, Biology and Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s10334-024-01218-y\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Magnetic Resonance Materials in Physics, Biology and Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10334-024-01218-y","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
Improved phosphorus MRSI acquisition through compressed sensing acceleration combined with low-rank reconstruction.
Objectives: Phosphorus-31 magnetic resonance spectroscopic imaging (31P-MRSI) is a non-invasive tool for assessing cellular high-energy metabolism in-vivo. However, its acquisition suffers from a low sensitivity, which necessitates large voxel sizes or multiple averages to achieve an acceptable signal-to-noise ratio (SNR), resulting in long scan times.
Materials and methods: To overcome these limitations, we propose an acquisition and reconstruction scheme for FID-MRSI sequences. Specifically, we employed Compressed Sensing (CS) and Low-Rank (LR) with Total Generalized Variation (TGV) regularization in a combined CS-LR framework. Additionally, we used a novel approach to k-space undersampling that utilizes distinct pseudo-random patterns for each average. To evaluate the proposed method's performance, we performed a retrospective analysis on healthy volunteers' brains and ex-vivo perfused kidneys.
Results: The presented method effectively improves the SNR two-to-threefold while preserving spectral and spatial quality even with threefold acceleration. We were able to recover signal attenuation of anatomical information, and the SNR improvement was obtained while maintaining the metabolites peaks linewidth.
Conclusions: We presented a novel combined CS-LR acceleration and reconstruction method for FID-MRSI sequences, utilizing a unique approach to k-space undersampling. Our proposed method has demonstrated promising results in enhancing the SNR making it applicable for reducing acquisition time.
期刊介绍:
MAGMA is a multidisciplinary international journal devoted to the publication of articles on all aspects of magnetic resonance techniques and their applications in medicine and biology. MAGMA currently publishes research papers, reviews, letters to the editor, and commentaries, six times a year. The subject areas covered by MAGMA include:
advances in materials, hardware and software in magnetic resonance technology,
new developments and results in research and practical applications of magnetic resonance imaging and spectroscopy related to biology and medicine,
study of animal models and intact cells using magnetic resonance,
reports of clinical trials on humans and clinical validation of magnetic resonance protocols.