{"title":"多功能钾通道Kv1.3及其在慢性肾脏疾病中的新意义","authors":"Zac Dragan, Carol A Pollock, Chunling Huang","doi":"10.1016/j.lfs.2024.123338","DOIUrl":null,"url":null,"abstract":"<p><p>Chronic kidney disease (CKD), a global public health problem, causes substantial morbidity and mortality worldwide. Innovative therapeutic strategies to mitigate the progression of CKD are needed due to the limitations of existing treatments. Kv1.3, a voltage-gated potassium ion channel, plays a crucial role in multiple biological processes, including cell proliferation, apoptosis, energy homeostasis, and migration. Inhibition of the Kv1.3 channels has shown beneficial effects in the therapy of a wide range of human diseases such as cancer, autoimmune and neuroinflammatory diseases. Increasing evidence reveals a close link between Kv1.3 and CKD. This review summarises the most recent insights into the physiological functions of the Kv1.3 channel and its pharmacological modulators. Furthermore, the therapeutic potential of targeting Kv1.3 for CKD is also discussed. Collectively, these studies suggested that Kv1.3 channels may serve as a novel target for CKD therapy.</p>","PeriodicalId":18122,"journal":{"name":"Life sciences","volume":" ","pages":"123338"},"PeriodicalIF":5.2000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Insight into a multifunctional potassium channel Kv1.3 and its novel implication in chronic kidney disease.\",\"authors\":\"Zac Dragan, Carol A Pollock, Chunling Huang\",\"doi\":\"10.1016/j.lfs.2024.123338\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Chronic kidney disease (CKD), a global public health problem, causes substantial morbidity and mortality worldwide. Innovative therapeutic strategies to mitigate the progression of CKD are needed due to the limitations of existing treatments. Kv1.3, a voltage-gated potassium ion channel, plays a crucial role in multiple biological processes, including cell proliferation, apoptosis, energy homeostasis, and migration. Inhibition of the Kv1.3 channels has shown beneficial effects in the therapy of a wide range of human diseases such as cancer, autoimmune and neuroinflammatory diseases. Increasing evidence reveals a close link between Kv1.3 and CKD. This review summarises the most recent insights into the physiological functions of the Kv1.3 channel and its pharmacological modulators. Furthermore, the therapeutic potential of targeting Kv1.3 for CKD is also discussed. Collectively, these studies suggested that Kv1.3 channels may serve as a novel target for CKD therapy.</p>\",\"PeriodicalId\":18122,\"journal\":{\"name\":\"Life sciences\",\"volume\":\" \",\"pages\":\"123338\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Life sciences\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.lfs.2024.123338\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/25 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Life sciences","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.lfs.2024.123338","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/25 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
Insight into a multifunctional potassium channel Kv1.3 and its novel implication in chronic kidney disease.
Chronic kidney disease (CKD), a global public health problem, causes substantial morbidity and mortality worldwide. Innovative therapeutic strategies to mitigate the progression of CKD are needed due to the limitations of existing treatments. Kv1.3, a voltage-gated potassium ion channel, plays a crucial role in multiple biological processes, including cell proliferation, apoptosis, energy homeostasis, and migration. Inhibition of the Kv1.3 channels has shown beneficial effects in the therapy of a wide range of human diseases such as cancer, autoimmune and neuroinflammatory diseases. Increasing evidence reveals a close link between Kv1.3 and CKD. This review summarises the most recent insights into the physiological functions of the Kv1.3 channel and its pharmacological modulators. Furthermore, the therapeutic potential of targeting Kv1.3 for CKD is also discussed. Collectively, these studies suggested that Kv1.3 channels may serve as a novel target for CKD therapy.
期刊介绍:
Life Sciences is an international journal publishing articles that emphasize the molecular, cellular, and functional basis of therapy. The journal emphasizes the understanding of mechanism that is relevant to all aspects of human disease and translation to patients. All articles are rigorously reviewed.
The Journal favors publication of full-length papers where modern scientific technologies are used to explain molecular, cellular and physiological mechanisms. Articles that merely report observations are rarely accepted. Recommendations from the Declaration of Helsinki or NIH guidelines for care and use of laboratory animals must be adhered to. Articles should be written at a level accessible to readers who are non-specialists in the topic of the article themselves, but who are interested in the research. The Journal welcomes reviews on topics of wide interest to investigators in the life sciences. We particularly encourage submission of brief, focused reviews containing high-quality artwork and require the use of mechanistic summary diagrams.