{"title":"类风湿关节炎患者IL-6受体/STAT3下游信号的调节","authors":"Fabio Cacciapaglia , Simone Perniola , Stefano Stano , Vincenzo Venerito , Dorotea Natuzzi , Rita Bizzoca , Florenzo Iannone","doi":"10.1016/j.yexmp.2024.104951","DOIUrl":null,"url":null,"abstract":"<div><div>Interleukin-6 (IL-6) is a relevant cytokine in rheumatoid arthritis (RA) pathogenesis, potentially activating Janus kinases (JAK)-1, −2, and tyrosine kinase 2 (TYK2), and thus, three signal transducer and activator of transcription (STAT)-1, −3 or − 5 pathways. This pilot study aims to explore differences in phosphorylated (p)STAT3 levels among patients with RA, those not classified as RA (nRA), and healthy donors (HD), providing some clues on the relative contribution of each JAK protein to the downstream of the IL-6-induced STAT3 pathway. Clinical data and blood samples from 80 subjects (41 RA, 14 nRA, and 25 HD) were collected. The activity of the JAK-STAT3 pathway was assessed by Western Blot and Real Time-PCR analysis for the quantification of STAT3 in peripheral blood mononuclear cells (PBMC). Furthermore, the impact of JAK-1, −2, and TYK2 inhibitors on pSTAT3 was assessed in vitro by FACS, with and without IL-6 stimulation in RA patients naïve to treatment with DMARD and steroids. The pSTAT3 (%) was significantly higher in PBMC from RA compared to nRA patients and HD. Furthermore, pSTAT3 (%) was significantly associated with inflammation and disease activity (ESR, CRP, and DAS28). The JAK-1 inhibitor was more effective in reducing pSTAT3 expression in CD14<sup>pos</sup> cells of RA patients, while the JAK-2 selective compound was more effective in CD4<sup>pos</sup> cells of RA patients. On the contrary, the TYK2 selective agent showed no significant effects. This study highlights the importance of the JAK/STAT3 pathway in RA. Some differences among various JAK proteins have been pointed out, with JAK1 and JAK2 standing as the most relevant mediators of the STAT3 pathway in this in-vitro model after IL-6R activation.</div></div>","PeriodicalId":12176,"journal":{"name":"Experimental and molecular pathology","volume":"141 ","pages":"Article 104951"},"PeriodicalIF":2.8000,"publicationDate":"2024-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modulation of IL-6 receptor/STAT3 downstream signaling in rheumatoid arthritis patients\",\"authors\":\"Fabio Cacciapaglia , Simone Perniola , Stefano Stano , Vincenzo Venerito , Dorotea Natuzzi , Rita Bizzoca , Florenzo Iannone\",\"doi\":\"10.1016/j.yexmp.2024.104951\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Interleukin-6 (IL-6) is a relevant cytokine in rheumatoid arthritis (RA) pathogenesis, potentially activating Janus kinases (JAK)-1, −2, and tyrosine kinase 2 (TYK2), and thus, three signal transducer and activator of transcription (STAT)-1, −3 or − 5 pathways. This pilot study aims to explore differences in phosphorylated (p)STAT3 levels among patients with RA, those not classified as RA (nRA), and healthy donors (HD), providing some clues on the relative contribution of each JAK protein to the downstream of the IL-6-induced STAT3 pathway. Clinical data and blood samples from 80 subjects (41 RA, 14 nRA, and 25 HD) were collected. The activity of the JAK-STAT3 pathway was assessed by Western Blot and Real Time-PCR analysis for the quantification of STAT3 in peripheral blood mononuclear cells (PBMC). Furthermore, the impact of JAK-1, −2, and TYK2 inhibitors on pSTAT3 was assessed in vitro by FACS, with and without IL-6 stimulation in RA patients naïve to treatment with DMARD and steroids. The pSTAT3 (%) was significantly higher in PBMC from RA compared to nRA patients and HD. Furthermore, pSTAT3 (%) was significantly associated with inflammation and disease activity (ESR, CRP, and DAS28). The JAK-1 inhibitor was more effective in reducing pSTAT3 expression in CD14<sup>pos</sup> cells of RA patients, while the JAK-2 selective compound was more effective in CD4<sup>pos</sup> cells of RA patients. On the contrary, the TYK2 selective agent showed no significant effects. This study highlights the importance of the JAK/STAT3 pathway in RA. Some differences among various JAK proteins have been pointed out, with JAK1 and JAK2 standing as the most relevant mediators of the STAT3 pathway in this in-vitro model after IL-6R activation.</div></div>\",\"PeriodicalId\":12176,\"journal\":{\"name\":\"Experimental and molecular pathology\",\"volume\":\"141 \",\"pages\":\"Article 104951\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-12-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Experimental and molecular pathology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0014480024000716\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PATHOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental and molecular pathology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0014480024000716","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PATHOLOGY","Score":null,"Total":0}
Modulation of IL-6 receptor/STAT3 downstream signaling in rheumatoid arthritis patients
Interleukin-6 (IL-6) is a relevant cytokine in rheumatoid arthritis (RA) pathogenesis, potentially activating Janus kinases (JAK)-1, −2, and tyrosine kinase 2 (TYK2), and thus, three signal transducer and activator of transcription (STAT)-1, −3 or − 5 pathways. This pilot study aims to explore differences in phosphorylated (p)STAT3 levels among patients with RA, those not classified as RA (nRA), and healthy donors (HD), providing some clues on the relative contribution of each JAK protein to the downstream of the IL-6-induced STAT3 pathway. Clinical data and blood samples from 80 subjects (41 RA, 14 nRA, and 25 HD) were collected. The activity of the JAK-STAT3 pathway was assessed by Western Blot and Real Time-PCR analysis for the quantification of STAT3 in peripheral blood mononuclear cells (PBMC). Furthermore, the impact of JAK-1, −2, and TYK2 inhibitors on pSTAT3 was assessed in vitro by FACS, with and without IL-6 stimulation in RA patients naïve to treatment with DMARD and steroids. The pSTAT3 (%) was significantly higher in PBMC from RA compared to nRA patients and HD. Furthermore, pSTAT3 (%) was significantly associated with inflammation and disease activity (ESR, CRP, and DAS28). The JAK-1 inhibitor was more effective in reducing pSTAT3 expression in CD14pos cells of RA patients, while the JAK-2 selective compound was more effective in CD4pos cells of RA patients. On the contrary, the TYK2 selective agent showed no significant effects. This study highlights the importance of the JAK/STAT3 pathway in RA. Some differences among various JAK proteins have been pointed out, with JAK1 and JAK2 standing as the most relevant mediators of the STAT3 pathway in this in-vitro model after IL-6R activation.
期刊介绍:
Under new editorial leadership, Experimental and Molecular Pathology presents original articles on disease processes in relation to structural and biochemical alterations in mammalian tissues and fluids and on the application of newer techniques of molecular biology to problems of pathology in humans and other animals. The journal also publishes selected interpretive synthesis reviews by bench level investigators working at the "cutting edge" of contemporary research in pathology. In addition, special thematic issues present original research reports that unravel some of Nature''s most jealously guarded secrets on the pathologic basis of disease.
Research Areas include: Stem cells; Neoangiogenesis; Molecular diagnostics; Polymerase chain reaction; In situ hybridization; DNA sequencing; Cell receptors; Carcinogenesis; Pathobiology of neoplasia; Complex infectious diseases; Transplantation; Cytokines; Flow cytomeric analysis; Inflammation; Cellular injury; Immunology and hypersensitivity; Athersclerosis.