生物相容性纤维素-四苯基酰腙自组装纳米胶束的开发和表征,酸触发释放阿霉素用于癌症治疗。

IF 2.8 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Katia Rupel, Lidia Fanfoni, Jacopo Dus, Martina Tommasini, Davide Porrelli, Barbara Medagli, Federica Canfora, Daniela Adamo, Roberto Di Lenarda, Giulia Ottaviani, Matteo Biasotto
{"title":"生物相容性纤维素-四苯基酰腙自组装纳米胶束的开发和表征,酸触发释放阿霉素用于癌症治疗。","authors":"Katia Rupel, Lidia Fanfoni, Jacopo Dus, Martina Tommasini, Davide Porrelli, Barbara Medagli, Federica Canfora, Daniela Adamo, Roberto Di Lenarda, Giulia Ottaviani, Matteo Biasotto","doi":"10.3390/cimb46120853","DOIUrl":null,"url":null,"abstract":"<p><p>The development of anticancer diagnostic and therapeutic strategies is of crucial importance to improve efficacy and therapeutic specificity. Here, we describe the synthesis and characterization of fluorescent self-assembling nanomicelles (NMs) based on a biocompatible polysaccharide (cellulose, CE) functionalized with a tetraphenyl ethylene derivative (TPEHy) and loaded with Doxorubicin (DOX) with aggregation-induced emission (AIE) properties and pH-dependent drug release. We obtained CE-TPEHy-NMs with an average diameter of 60 ± 17 nm for unloaded NMs and 86 ± 25 nm for NMs loaded with DOX, respectively. Upon testing different conditions, we obtained an encapsulation efficiency of 86% and a loading capacity of 90%. A controlled dialysis experiment showed that the release of DOX after 48 h is minimal at pH 7.4 (11%), increasing at pH 6.5 (50%) and at its maximum at pH 4.5 (80%). The cytotoxicity of blank and loaded CE-TPEHy-NMs at increasing concentrations and different pH conditions was tested on a MG-63 human osteosarcoma cell line. Based on viability assays at pH 7.4, neither unloaded nor loaded CE-TPEHy-NMs exerted any inhibition on cell proliferation. At pH 6.5, proliferation inhibition significantly increased, confirming the pH-dependent release. We characterized and studied the performance of CE-based amphiphilic, biocompatible NMs for controlled drug release in acidic conditions, such as tumor microenvironments. Further studies are required to optimize their synthesis process and to validate their antitumoral properties in vivo.</p>","PeriodicalId":10839,"journal":{"name":"Current Issues in Molecular Biology","volume":"46 12","pages":"14244-14258"},"PeriodicalIF":2.8000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11674980/pdf/","citationCount":"0","resultStr":"{\"title\":\"Development and Characterization of Biocompatible Cellulose-Tetraphenylethylene Hydrazone Self-Assembling Nanomicelles with Acidity-Triggered Release of Doxorubicin for Cancer Therapy.\",\"authors\":\"Katia Rupel, Lidia Fanfoni, Jacopo Dus, Martina Tommasini, Davide Porrelli, Barbara Medagli, Federica Canfora, Daniela Adamo, Roberto Di Lenarda, Giulia Ottaviani, Matteo Biasotto\",\"doi\":\"10.3390/cimb46120853\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The development of anticancer diagnostic and therapeutic strategies is of crucial importance to improve efficacy and therapeutic specificity. Here, we describe the synthesis and characterization of fluorescent self-assembling nanomicelles (NMs) based on a biocompatible polysaccharide (cellulose, CE) functionalized with a tetraphenyl ethylene derivative (TPEHy) and loaded with Doxorubicin (DOX) with aggregation-induced emission (AIE) properties and pH-dependent drug release. We obtained CE-TPEHy-NMs with an average diameter of 60 ± 17 nm for unloaded NMs and 86 ± 25 nm for NMs loaded with DOX, respectively. Upon testing different conditions, we obtained an encapsulation efficiency of 86% and a loading capacity of 90%. A controlled dialysis experiment showed that the release of DOX after 48 h is minimal at pH 7.4 (11%), increasing at pH 6.5 (50%) and at its maximum at pH 4.5 (80%). The cytotoxicity of blank and loaded CE-TPEHy-NMs at increasing concentrations and different pH conditions was tested on a MG-63 human osteosarcoma cell line. Based on viability assays at pH 7.4, neither unloaded nor loaded CE-TPEHy-NMs exerted any inhibition on cell proliferation. At pH 6.5, proliferation inhibition significantly increased, confirming the pH-dependent release. We characterized and studied the performance of CE-based amphiphilic, biocompatible NMs for controlled drug release in acidic conditions, such as tumor microenvironments. Further studies are required to optimize their synthesis process and to validate their antitumoral properties in vivo.</p>\",\"PeriodicalId\":10839,\"journal\":{\"name\":\"Current Issues in Molecular Biology\",\"volume\":\"46 12\",\"pages\":\"14244-14258\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-12-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11674980/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Issues in Molecular Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.3390/cimb46120853\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Issues in Molecular Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/cimb46120853","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

发展抗癌诊断和治疗策略对提高疗效和治疗特异性至关重要。在这里,我们描述了基于四苯基乙烯衍生物(TPEHy)功能化的生物相容性多糖(纤维素,CE)和负载多柔比星(DOX)的荧光自组装纳米束(NMs)的合成和表征,这些纳米束具有聚集诱导发射(AIE)特性和ph依赖性药物释放。我们得到的CE-TPEHy-NMs的平均直径分别为60±17 nm和86±25 nm。经过不同条件的测试,我们获得了86%的封装效率和90%的负载能力。对照透析实验表明,在pH值为7.4时,48 h后DOX的释放量最小(11%),在pH值为6.5时,DOX的释放量增加(50%),在pH值为4.5时DOX的释放量最大(80%)。在MG-63人骨肉瘤细胞系上,研究了空白和负载CE-TPEHy-NMs在增加浓度和不同pH条件下的细胞毒性。在pH 7.4的条件下,CE-TPEHy-NMs对细胞增殖没有任何抑制作用。在pH 6.5时,增殖抑制显著增强,证实了pH依赖性释放。我们表征并研究了ce基两亲性、生物相容性NMs在酸性条件下(如肿瘤微环境)的控释性能。需要进一步的研究来优化它们的合成过程并验证它们在体内的抗肿瘤特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Development and Characterization of Biocompatible Cellulose-Tetraphenylethylene Hydrazone Self-Assembling Nanomicelles with Acidity-Triggered Release of Doxorubicin for Cancer Therapy.

The development of anticancer diagnostic and therapeutic strategies is of crucial importance to improve efficacy and therapeutic specificity. Here, we describe the synthesis and characterization of fluorescent self-assembling nanomicelles (NMs) based on a biocompatible polysaccharide (cellulose, CE) functionalized with a tetraphenyl ethylene derivative (TPEHy) and loaded with Doxorubicin (DOX) with aggregation-induced emission (AIE) properties and pH-dependent drug release. We obtained CE-TPEHy-NMs with an average diameter of 60 ± 17 nm for unloaded NMs and 86 ± 25 nm for NMs loaded with DOX, respectively. Upon testing different conditions, we obtained an encapsulation efficiency of 86% and a loading capacity of 90%. A controlled dialysis experiment showed that the release of DOX after 48 h is minimal at pH 7.4 (11%), increasing at pH 6.5 (50%) and at its maximum at pH 4.5 (80%). The cytotoxicity of blank and loaded CE-TPEHy-NMs at increasing concentrations and different pH conditions was tested on a MG-63 human osteosarcoma cell line. Based on viability assays at pH 7.4, neither unloaded nor loaded CE-TPEHy-NMs exerted any inhibition on cell proliferation. At pH 6.5, proliferation inhibition significantly increased, confirming the pH-dependent release. We characterized and studied the performance of CE-based amphiphilic, biocompatible NMs for controlled drug release in acidic conditions, such as tumor microenvironments. Further studies are required to optimize their synthesis process and to validate their antitumoral properties in vivo.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Current Issues in Molecular Biology
Current Issues in Molecular Biology 生物-生化研究方法
CiteScore
2.90
自引率
3.20%
发文量
380
审稿时长
>12 weeks
期刊介绍: Current Issues in Molecular Biology (CIMB) is a peer-reviewed journal publishing review articles and minireviews in all areas of molecular biology and microbiology. Submitted articles are subject to an Article Processing Charge (APC) and are open access immediately upon publication. All manuscripts undergo a peer-review process.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信