Paola Fabbrizio, Sharada Baindoor, Cassandra Margotta, Junyi Su, Elena P Morrissey, Ina Woods, Marion C Hogg, Sara Vianello, Morten T Venø, Jørgen Kjems, Gianni Sorarù, Caterina Bendotti, Jochen H M Prehn, Giovanni Nardo
{"title":"血管生成素在肌萎缩侧索硬化症肌肉再生中的保护作用:诊断和治疗意义。","authors":"Paola Fabbrizio, Sharada Baindoor, Cassandra Margotta, Junyi Su, Elena P Morrissey, Ina Woods, Marion C Hogg, Sara Vianello, Morten T Venø, Jørgen Kjems, Gianni Sorarù, Caterina Bendotti, Jochen H M Prehn, Giovanni Nardo","doi":"10.1111/bpa.13328","DOIUrl":null,"url":null,"abstract":"<p><p>Amyotrophic lateral sclerosis (ALS) is a fatal neuromuscular disease with no effective treatments, in part caused by variations in progression and the absence of biomarkers. Mice carrying the SOD1G93A transgene with different genetic backgrounds show variable disease rates, reflecting the diversity of patients. While extensive research has been done on the involvement of the central nervous system, the role of skeletal muscle remains underexplored. We examined the impact of angiogenin, including its RNase activity, in skeletal muscles of ALS mouse models and in biopsies from ALS patients. Elevated levels of angiogenin were found in slowly progressing mice but not in rapidly progressing mice, correlating with increased muscle regeneration and vascularisation. In patients, higher levels of angiogenin in skeletal muscles correlated with milder disease. Mechanistically, angiogenin promotes muscle regeneration and vascularisation through satellite cell-endothelial interactions during myogenesis and angiogenesis. Furthermore, specific angiogenin-derived tiRNAs were upregulated in slowly progressing mice, suggesting their role in mediating the effects of angiogenin. These findings highlight angiogenin and its tiRNAs as potential prognostic markers and therapeutic targets for ALS, offering avenues for patient stratification and interventions to mitigate disease progression by promoting muscle regeneration.</p>","PeriodicalId":9290,"journal":{"name":"Brain Pathology","volume":" ","pages":"e13328"},"PeriodicalIF":5.8000,"publicationDate":"2024-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Protective role of Angiogenin in muscle regeneration in amyotrophic lateral sclerosis: Diagnostic and therapeutic implications.\",\"authors\":\"Paola Fabbrizio, Sharada Baindoor, Cassandra Margotta, Junyi Su, Elena P Morrissey, Ina Woods, Marion C Hogg, Sara Vianello, Morten T Venø, Jørgen Kjems, Gianni Sorarù, Caterina Bendotti, Jochen H M Prehn, Giovanni Nardo\",\"doi\":\"10.1111/bpa.13328\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Amyotrophic lateral sclerosis (ALS) is a fatal neuromuscular disease with no effective treatments, in part caused by variations in progression and the absence of biomarkers. Mice carrying the SOD1G93A transgene with different genetic backgrounds show variable disease rates, reflecting the diversity of patients. While extensive research has been done on the involvement of the central nervous system, the role of skeletal muscle remains underexplored. We examined the impact of angiogenin, including its RNase activity, in skeletal muscles of ALS mouse models and in biopsies from ALS patients. Elevated levels of angiogenin were found in slowly progressing mice but not in rapidly progressing mice, correlating with increased muscle regeneration and vascularisation. In patients, higher levels of angiogenin in skeletal muscles correlated with milder disease. Mechanistically, angiogenin promotes muscle regeneration and vascularisation through satellite cell-endothelial interactions during myogenesis and angiogenesis. Furthermore, specific angiogenin-derived tiRNAs were upregulated in slowly progressing mice, suggesting their role in mediating the effects of angiogenin. These findings highlight angiogenin and its tiRNAs as potential prognostic markers and therapeutic targets for ALS, offering avenues for patient stratification and interventions to mitigate disease progression by promoting muscle regeneration.</p>\",\"PeriodicalId\":9290,\"journal\":{\"name\":\"Brain Pathology\",\"volume\":\" \",\"pages\":\"e13328\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2024-12-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brain Pathology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1111/bpa.13328\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Pathology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/bpa.13328","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
Protective role of Angiogenin in muscle regeneration in amyotrophic lateral sclerosis: Diagnostic and therapeutic implications.
Amyotrophic lateral sclerosis (ALS) is a fatal neuromuscular disease with no effective treatments, in part caused by variations in progression and the absence of biomarkers. Mice carrying the SOD1G93A transgene with different genetic backgrounds show variable disease rates, reflecting the diversity of patients. While extensive research has been done on the involvement of the central nervous system, the role of skeletal muscle remains underexplored. We examined the impact of angiogenin, including its RNase activity, in skeletal muscles of ALS mouse models and in biopsies from ALS patients. Elevated levels of angiogenin were found in slowly progressing mice but not in rapidly progressing mice, correlating with increased muscle regeneration and vascularisation. In patients, higher levels of angiogenin in skeletal muscles correlated with milder disease. Mechanistically, angiogenin promotes muscle regeneration and vascularisation through satellite cell-endothelial interactions during myogenesis and angiogenesis. Furthermore, specific angiogenin-derived tiRNAs were upregulated in slowly progressing mice, suggesting their role in mediating the effects of angiogenin. These findings highlight angiogenin and its tiRNAs as potential prognostic markers and therapeutic targets for ALS, offering avenues for patient stratification and interventions to mitigate disease progression by promoting muscle regeneration.
期刊介绍:
Brain Pathology is the journal of choice for biomedical scientists investigating diseases of the nervous system. The official journal of the International Society of Neuropathology, Brain Pathology is a peer-reviewed quarterly publication that includes original research, review articles and symposia focuses on the pathogenesis of neurological disease.