低氧诱导乳腺癌形态学改变的计算病理学检测。

IF 4.7 2区 医学 Q1 PATHOLOGY
Petru Manescu, Joseph Geradts, Delmiro Fernandez-Reyes
{"title":"低氧诱导乳腺癌形态学改变的计算病理学检测。","authors":"Petru Manescu, Joseph Geradts, Delmiro Fernandez-Reyes","doi":"10.1016/j.ajpath.2024.10.023","DOIUrl":null,"url":null,"abstract":"<p><p>Understanding the tumor hypoxic microenvironment is crucial for grasping tumor biology, clinical progression, and treatment responses. This study presents a novel application of artificial intelligence in computational histopathology to evaluate hypoxia in breast cancer. Weakly supervised deep learning models can accurately detect morphologic changes associated with hypoxia in routine hematoxylin and eosin (H&E)-stained whole slide images (WSIs). Our model, HypOxNet, was trained on H&E-stained WSIs from breast cancer primary sites (n = 1016) at ×40 magnification using data from The Cancer Genome Atlas. We used the Hypoxia Buffa signature to measure hypoxia scores, which ranged from -43 to 47, and stratified the samples into hypoxic and normoxic based on these scores. This stratification represented the weak labels associated with each WSI. HypOxNet achieved an average area under the curve of 0.82 on test sets, identifying significant differences in cell morphology between hypoxic and normoxic tissue regions. Importantly, once trained, the HypOxNet model requires only the readily available H&E-stained slides, making it especially valuable in low-resource settings where additional gene expression assays are not available. These artificial intelligence-based hypoxia detection models can potentially be extended to other tumor types and seamlessly integrated into pathology workflows, offering a fast, cost-effective alternative to molecular testing.</p>","PeriodicalId":7623,"journal":{"name":"American Journal of Pathology","volume":" ","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Computational Pathology Detection of Hypoxia-Induced Morphologic Changes in Breast Cancer.\",\"authors\":\"Petru Manescu, Joseph Geradts, Delmiro Fernandez-Reyes\",\"doi\":\"10.1016/j.ajpath.2024.10.023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Understanding the tumor hypoxic microenvironment is crucial for grasping tumor biology, clinical progression, and treatment responses. This study presents a novel application of artificial intelligence in computational histopathology to evaluate hypoxia in breast cancer. Weakly supervised deep learning models can accurately detect morphologic changes associated with hypoxia in routine hematoxylin and eosin (H&E)-stained whole slide images (WSIs). Our model, HypOxNet, was trained on H&E-stained WSIs from breast cancer primary sites (n = 1016) at ×40 magnification using data from The Cancer Genome Atlas. We used the Hypoxia Buffa signature to measure hypoxia scores, which ranged from -43 to 47, and stratified the samples into hypoxic and normoxic based on these scores. This stratification represented the weak labels associated with each WSI. HypOxNet achieved an average area under the curve of 0.82 on test sets, identifying significant differences in cell morphology between hypoxic and normoxic tissue regions. Importantly, once trained, the HypOxNet model requires only the readily available H&E-stained slides, making it especially valuable in low-resource settings where additional gene expression assays are not available. These artificial intelligence-based hypoxia detection models can potentially be extended to other tumor types and seamlessly integrated into pathology workflows, offering a fast, cost-effective alternative to molecular testing.</p>\",\"PeriodicalId\":7623,\"journal\":{\"name\":\"American Journal of Pathology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-12-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American Journal of Pathology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.ajpath.2024.10.023\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PATHOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Pathology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.ajpath.2024.10.023","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PATHOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

了解肿瘤缺氧微环境对于掌握肿瘤生物学、临床进展和治疗反应至关重要。本研究提出了人工智能在计算组织病理学中评估乳腺癌缺氧的新应用。弱监督深度学习(WSDL)模型可以准确检测常规苏木精和伊红(H&E)全幻灯片图像(WSI)中与缺氧相关的形态学变化。我们的模型HypOxNet使用来自癌症基因组图谱(TCGA)的数据,在40倍放大镜下对来自乳腺癌原发部位(n=1016)的H&E WSI进行训练。我们利用Hypoxia Buffa特征测量低氧评分,范围从-43到+47,并根据这些评分将样品分为低氧和正氧。这种分层表示与每个WSI相关的弱标签。在测试集上,HypOxNet的平均曲线下面积(AUC)为0.82,确定了缺氧和常氧组织区域之间细胞形态的显著差异。重要的是,一旦训练,HypOxNet模型只需要现成的H&E载玻片,这使得它在资源匮乏的环境中特别有价值,因为没有额外的基因表达测定。这些基于人工智能的缺氧检测模型有可能扩展到其他肿瘤类型,并无缝集成到病理工作流程中,为分子检测提供了一种快速、经济的替代方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Computational Pathology Detection of Hypoxia-Induced Morphologic Changes in Breast Cancer.

Understanding the tumor hypoxic microenvironment is crucial for grasping tumor biology, clinical progression, and treatment responses. This study presents a novel application of artificial intelligence in computational histopathology to evaluate hypoxia in breast cancer. Weakly supervised deep learning models can accurately detect morphologic changes associated with hypoxia in routine hematoxylin and eosin (H&E)-stained whole slide images (WSIs). Our model, HypOxNet, was trained on H&E-stained WSIs from breast cancer primary sites (n = 1016) at ×40 magnification using data from The Cancer Genome Atlas. We used the Hypoxia Buffa signature to measure hypoxia scores, which ranged from -43 to 47, and stratified the samples into hypoxic and normoxic based on these scores. This stratification represented the weak labels associated with each WSI. HypOxNet achieved an average area under the curve of 0.82 on test sets, identifying significant differences in cell morphology between hypoxic and normoxic tissue regions. Importantly, once trained, the HypOxNet model requires only the readily available H&E-stained slides, making it especially valuable in low-resource settings where additional gene expression assays are not available. These artificial intelligence-based hypoxia detection models can potentially be extended to other tumor types and seamlessly integrated into pathology workflows, offering a fast, cost-effective alternative to molecular testing.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
11.40
自引率
0.00%
发文量
178
审稿时长
30 days
期刊介绍: The American Journal of Pathology, official journal of the American Society for Investigative Pathology, published by Elsevier, Inc., seeks high-quality original research reports, reviews, and commentaries related to the molecular and cellular basis of disease. The editors will consider basic, translational, and clinical investigations that directly address mechanisms of pathogenesis or provide a foundation for future mechanistic inquiries. Examples of such foundational investigations include data mining, identification of biomarkers, molecular pathology, and discovery research. Foundational studies that incorporate deep learning and artificial intelligence are also welcome. High priority is given to studies of human disease and relevant experimental models using molecular, cellular, and organismal approaches.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信