胺功能化硫化镉-铜sulfide@titanium富氧空穴空心球的多异质界面电荷转移用于二氧化碳光还原。

IF 9.4 1区 化学 Q1 CHEMISTRY, PHYSICAL
Journal of Colloid and Interface Science Pub Date : 2025-04-01 Epub Date: 2024-12-21 DOI:10.1016/j.jcis.2024.12.154
Jing Lin, Yajie Chen, Li Kan, Xinyan Yu, Guohui Tian
{"title":"胺功能化硫化镉-铜sulfide@titanium富氧空穴空心球的多异质界面电荷转移用于二氧化碳光还原。","authors":"Jing Lin, Yajie Chen, Li Kan, Xinyan Yu, Guohui Tian","doi":"10.1016/j.jcis.2024.12.154","DOIUrl":null,"url":null,"abstract":"<p><p>Photocatalytically reducing CO<sub>2</sub> into high-value-added chemical materials has surfaced as a viable strategy for harnessing solar energy and mitigating the greenhouse effect. But the inadequate separation of the photogenerated electron-hole pair remains a major obstacle to CO<sub>2</sub> photoreduction. Constructing heterostructure photocatalysts with efficient interface charge transfer is a promising approach to solving the above problems. Herein, a straightforward synthetic strategy is developed to fabricate amine-functionalized cadmium sulfide-copper sulfide@titanium dioxide (CdS-CuS@TiO<sub>2</sub>) hollow spheres with rich oxygen vacancies for CO<sub>2</sub> photoreduction. The synthetic route involves successive steps of the coating of CdS nanolayer on the prepared SiO<sub>2</sub> solid nanospheres, transformation of CdS into CdS-CuS through cation exchange reaction, the coating of amorphous TiO<sub>2</sub> nanoparticle layer on the SiO<sub>2</sub>@CdS-CuS solid nanospheres, and the simultaneous transformations of solid nanospheres to hollow nanospheres and amorphous TiO<sub>2</sub> nanoparticle layer to amine-functionalized anatase TiO<sub>2</sub> nanosheets with rich oxygen vacancies via the hydrothermal reaction process in the presence of ethylenediamine. In the composite catalyst, the formed multi-heterointerfaces among the different components accelerate charge separation and transport. Moreover, the formed hollow spherical structure covered with amine-functionalized TiO<sub>2</sub> ultrathin nanosheets with rich oxygen vacancies exposes a greater number of active sites for CO<sub>2</sub> adsorption and increases incident light absorption and utilization. As anticipated, the optimal composite catalyst demonstrates much higher CO<sub>2</sub> reduction properties with a considerable CO yield (115.66 μmol g<sup>-1</sup> h<sup>-1</sup>), surpassing that of the control catalysts (single component and bicomponent). This research offers a versatile synthetic method to synthesize excellent catalysts aimed at the production of solar fuels.</p>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":"683 Pt 2","pages":"125-138"},"PeriodicalIF":9.4000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-heterointerface charge transfer in amine-functionalized cadmium sulfide-copper sulfide@titanium dioxide hollow spheres with rich oxygen vacancies for carbon dioxide photoreduction.\",\"authors\":\"Jing Lin, Yajie Chen, Li Kan, Xinyan Yu, Guohui Tian\",\"doi\":\"10.1016/j.jcis.2024.12.154\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Photocatalytically reducing CO<sub>2</sub> into high-value-added chemical materials has surfaced as a viable strategy for harnessing solar energy and mitigating the greenhouse effect. But the inadequate separation of the photogenerated electron-hole pair remains a major obstacle to CO<sub>2</sub> photoreduction. Constructing heterostructure photocatalysts with efficient interface charge transfer is a promising approach to solving the above problems. Herein, a straightforward synthetic strategy is developed to fabricate amine-functionalized cadmium sulfide-copper sulfide@titanium dioxide (CdS-CuS@TiO<sub>2</sub>) hollow spheres with rich oxygen vacancies for CO<sub>2</sub> photoreduction. The synthetic route involves successive steps of the coating of CdS nanolayer on the prepared SiO<sub>2</sub> solid nanospheres, transformation of CdS into CdS-CuS through cation exchange reaction, the coating of amorphous TiO<sub>2</sub> nanoparticle layer on the SiO<sub>2</sub>@CdS-CuS solid nanospheres, and the simultaneous transformations of solid nanospheres to hollow nanospheres and amorphous TiO<sub>2</sub> nanoparticle layer to amine-functionalized anatase TiO<sub>2</sub> nanosheets with rich oxygen vacancies via the hydrothermal reaction process in the presence of ethylenediamine. In the composite catalyst, the formed multi-heterointerfaces among the different components accelerate charge separation and transport. Moreover, the formed hollow spherical structure covered with amine-functionalized TiO<sub>2</sub> ultrathin nanosheets with rich oxygen vacancies exposes a greater number of active sites for CO<sub>2</sub> adsorption and increases incident light absorption and utilization. As anticipated, the optimal composite catalyst demonstrates much higher CO<sub>2</sub> reduction properties with a considerable CO yield (115.66 μmol g<sup>-1</sup> h<sup>-1</sup>), surpassing that of the control catalysts (single component and bicomponent). This research offers a versatile synthetic method to synthesize excellent catalysts aimed at the production of solar fuels.</p>\",\"PeriodicalId\":351,\"journal\":{\"name\":\"Journal of Colloid and Interface Science\",\"volume\":\"683 Pt 2\",\"pages\":\"125-138\"},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Colloid and Interface Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jcis.2024.12.154\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/21 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Colloid and Interface Science","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.jcis.2024.12.154","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/21 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

光催化将二氧化碳还原成高附加值的化学材料已经成为利用太阳能和减轻温室效应的可行策略。但是光生电子-空穴对的分离不足仍然是CO2光还原的主要障碍。构建具有高效界面电荷转移的异质结构光催化剂是解决上述问题的有效途径。本文开发了一种简单的合成策略,以制备胺功能化的硫化镉-铜sulfide@titanium dioxide (CdS-CuS@TiO2)空心球,具有丰富的氧空位,用于CO2光还原。合成路线包括:在制备的SiO2固体纳米球上涂覆CdS纳米层,通过阳离子交换反应将CdS转化为CdS- cu,在SiO2@CdS-CuS固体纳米球上涂覆无定形TiO2纳米颗粒层,在乙二胺的存在下,通过水热反应将固体纳米球转化为空心纳米球,将无定形TiO2纳米颗粒层转化为富氧空位的胺官能化锐钛矿TiO2纳米片。在复合催化剂中,不同组分之间形成的多异质界面加速了电荷的分离和输运。此外,氨基功能化TiO2超薄纳米片覆盖的空心球形结构具有丰富的氧空位,暴露了更多的CO2吸附活性位点,增加了入射光的吸收和利用。结果表明,优化后的复合催化剂具有较高的CO2还原性能,CO产率为115.66 μmol g-1 h-1,优于对照催化剂(单组分和双组分)。本研究提供了一种多功能的合成方法来合成针对太阳能燃料生产的优良催化剂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-heterointerface charge transfer in amine-functionalized cadmium sulfide-copper sulfide@titanium dioxide hollow spheres with rich oxygen vacancies for carbon dioxide photoreduction.

Photocatalytically reducing CO2 into high-value-added chemical materials has surfaced as a viable strategy for harnessing solar energy and mitigating the greenhouse effect. But the inadequate separation of the photogenerated electron-hole pair remains a major obstacle to CO2 photoreduction. Constructing heterostructure photocatalysts with efficient interface charge transfer is a promising approach to solving the above problems. Herein, a straightforward synthetic strategy is developed to fabricate amine-functionalized cadmium sulfide-copper sulfide@titanium dioxide (CdS-CuS@TiO2) hollow spheres with rich oxygen vacancies for CO2 photoreduction. The synthetic route involves successive steps of the coating of CdS nanolayer on the prepared SiO2 solid nanospheres, transformation of CdS into CdS-CuS through cation exchange reaction, the coating of amorphous TiO2 nanoparticle layer on the SiO2@CdS-CuS solid nanospheres, and the simultaneous transformations of solid nanospheres to hollow nanospheres and amorphous TiO2 nanoparticle layer to amine-functionalized anatase TiO2 nanosheets with rich oxygen vacancies via the hydrothermal reaction process in the presence of ethylenediamine. In the composite catalyst, the formed multi-heterointerfaces among the different components accelerate charge separation and transport. Moreover, the formed hollow spherical structure covered with amine-functionalized TiO2 ultrathin nanosheets with rich oxygen vacancies exposes a greater number of active sites for CO2 adsorption and increases incident light absorption and utilization. As anticipated, the optimal composite catalyst demonstrates much higher CO2 reduction properties with a considerable CO yield (115.66 μmol g-1 h-1), surpassing that of the control catalysts (single component and bicomponent). This research offers a versatile synthetic method to synthesize excellent catalysts aimed at the production of solar fuels.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
16.10
自引率
7.10%
发文量
2568
审稿时长
2 months
期刊介绍: The Journal of Colloid and Interface Science publishes original research findings on the fundamental principles of colloid and interface science, as well as innovative applications in various fields. The criteria for publication include impact, quality, novelty, and originality. Emphasis: The journal emphasizes fundamental scientific innovation within the following categories: A.Colloidal Materials and Nanomaterials B.Soft Colloidal and Self-Assembly Systems C.Adsorption, Catalysis, and Electrochemistry D.Interfacial Processes, Capillarity, and Wetting E.Biomaterials and Nanomedicine F.Energy Conversion and Storage, and Environmental Technologies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信