{"title":"DNA质量标签定量分析PTM化学计量学。","authors":"Yuanpei Li , Yuan Liu , Chu Wang","doi":"10.1016/j.bmc.2024.118050","DOIUrl":null,"url":null,"abstract":"<div><div>Protein post-translational modification (PTM) serves as an important mechanism for regulating protein function. Accurate assay of PTM stoichiometry, or PTM occupancy, which refers to the proportion of proteins that contain specific modifications, is important for understanding the function of PTMs. We previously developed a novel chemoproteomic strategy “STO-MS” to quantify the PTM stoichiometry in complex biological samples, which employs a resolvable polymer mass tag to differentiate modified proteins and utilizes liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) techniques to measure PTM stoichiometry. However, the resolution of STO-MS is constrained by the relatively low molecular weight of the mass tag, and the incorporation of isotopic labels not only complicates the sample preparation but also restricts the measurement throughput. To address these challenges, we herein developed “STO-MS+”, an enhanced workflow, that incorporates an optimized DNA mass tag and employs a label-free quantitative data analysis approach. We applied STO-MS+ to measure stoichiometry of three distinct PTMs, including endogenous carbonylation induced by arachidonic acid (AA), itaconation, and endogenous O-GlcNAcylation. Our work marks a notable improvement in chemoproteomic methodologies for quantifying post-translational modifications and provides a powerful analytical tool for PTM research.</div></div>","PeriodicalId":255,"journal":{"name":"Bioorganic & Medicinal Chemistry","volume":"118 ","pages":"Article 118050"},"PeriodicalIF":3.3000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantitative profiling of PTM stoichiometry by DNA mass tags\",\"authors\":\"Yuanpei Li , Yuan Liu , Chu Wang\",\"doi\":\"10.1016/j.bmc.2024.118050\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Protein post-translational modification (PTM) serves as an important mechanism for regulating protein function. Accurate assay of PTM stoichiometry, or PTM occupancy, which refers to the proportion of proteins that contain specific modifications, is important for understanding the function of PTMs. We previously developed a novel chemoproteomic strategy “STO-MS” to quantify the PTM stoichiometry in complex biological samples, which employs a resolvable polymer mass tag to differentiate modified proteins and utilizes liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) techniques to measure PTM stoichiometry. However, the resolution of STO-MS is constrained by the relatively low molecular weight of the mass tag, and the incorporation of isotopic labels not only complicates the sample preparation but also restricts the measurement throughput. To address these challenges, we herein developed “STO-MS+”, an enhanced workflow, that incorporates an optimized DNA mass tag and employs a label-free quantitative data analysis approach. We applied STO-MS+ to measure stoichiometry of three distinct PTMs, including endogenous carbonylation induced by arachidonic acid (AA), itaconation, and endogenous O-GlcNAcylation. Our work marks a notable improvement in chemoproteomic methodologies for quantifying post-translational modifications and provides a powerful analytical tool for PTM research.</div></div>\",\"PeriodicalId\":255,\"journal\":{\"name\":\"Bioorganic & Medicinal Chemistry\",\"volume\":\"118 \",\"pages\":\"Article 118050\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioorganic & Medicinal Chemistry\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0968089624004644\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioorganic & Medicinal Chemistry","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0968089624004644","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Quantitative profiling of PTM stoichiometry by DNA mass tags
Protein post-translational modification (PTM) serves as an important mechanism for regulating protein function. Accurate assay of PTM stoichiometry, or PTM occupancy, which refers to the proportion of proteins that contain specific modifications, is important for understanding the function of PTMs. We previously developed a novel chemoproteomic strategy “STO-MS” to quantify the PTM stoichiometry in complex biological samples, which employs a resolvable polymer mass tag to differentiate modified proteins and utilizes liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) techniques to measure PTM stoichiometry. However, the resolution of STO-MS is constrained by the relatively low molecular weight of the mass tag, and the incorporation of isotopic labels not only complicates the sample preparation but also restricts the measurement throughput. To address these challenges, we herein developed “STO-MS+”, an enhanced workflow, that incorporates an optimized DNA mass tag and employs a label-free quantitative data analysis approach. We applied STO-MS+ to measure stoichiometry of three distinct PTMs, including endogenous carbonylation induced by arachidonic acid (AA), itaconation, and endogenous O-GlcNAcylation. Our work marks a notable improvement in chemoproteomic methodologies for quantifying post-translational modifications and provides a powerful analytical tool for PTM research.
期刊介绍:
Bioorganic & Medicinal Chemistry provides an international forum for the publication of full original research papers and critical reviews on molecular interactions in key biological targets such as receptors, channels, enzymes, nucleotides, lipids and saccharides.
The aim of the journal is to promote a better understanding at the molecular level of life processes, and living organisms, as well as the interaction of these with chemical agents. A special feature will be that colour illustrations will be reproduced at no charge to the author, provided that the Editor agrees that colour is essential to the information content of the illustration in question.