医学超声在诊断之外的应用:来自超声传感和生物反应的见解。

IF 3.2 3区 生物学 Q2 BIOCHEMICAL RESEARCH METHODS
Yubo Lai, Wenxin Tao, Lantian Wang, Zhaoyou Liu, Pengying Wu, Guodong Yang, Lijun Yuan
{"title":"医学超声在诊断之外的应用:来自超声传感和生物反应的见解。","authors":"Yubo Lai,&nbsp;Wenxin Tao,&nbsp;Lantian Wang,&nbsp;Zhaoyou Liu,&nbsp;Pengying Wu,&nbsp;Guodong Yang,&nbsp;Lijun Yuan","doi":"10.1002/biot.202400561","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Ultrasound (US) can easily penetrate media with excellent spatial precision corresponding to its wavelength. Naturally, US plays a pivotal role in the echolocation abilities of certain mammals such as bats and dolphins. In addition, medical US generated by transducers interact with tissues via delivering ultrasonic energy in the modes of heat generation, exertion of acoustic radiation force (ARF), and acoustic cavitation. Based on the principle of echolocation, various assistive devices for visual impairment people have been developed. High-Intensity Focused Ultrasound (HIFU) are developed for targeted ablation and tissue destruction. Besides thermal ablation, histotripsy with US is designed to damage tissue purely via mechanical effect without thermal coagulation. Low-Intensity Focused Ultrasound (LIFU) has been proven to be an effective stimulation method for neuromodulation. Furthermore, US has been reported to transiently increase the permeability of biological membranes, enabling acoustic transfection and blood-brain barrier open. All of these advances in US are changing the clinic. This review mainly introduces the advances in these aspects, focusing on the physical and biological principles, challenges, and future direction.</p>\n </div>","PeriodicalId":134,"journal":{"name":"Biotechnology Journal","volume":"19 12","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Medical Ultrasound Application Beyond Diagnosis: Insights From Ultrasound Sensing and Biological Response\",\"authors\":\"Yubo Lai,&nbsp;Wenxin Tao,&nbsp;Lantian Wang,&nbsp;Zhaoyou Liu,&nbsp;Pengying Wu,&nbsp;Guodong Yang,&nbsp;Lijun Yuan\",\"doi\":\"10.1002/biot.202400561\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Ultrasound (US) can easily penetrate media with excellent spatial precision corresponding to its wavelength. Naturally, US plays a pivotal role in the echolocation abilities of certain mammals such as bats and dolphins. In addition, medical US generated by transducers interact with tissues via delivering ultrasonic energy in the modes of heat generation, exertion of acoustic radiation force (ARF), and acoustic cavitation. Based on the principle of echolocation, various assistive devices for visual impairment people have been developed. High-Intensity Focused Ultrasound (HIFU) are developed for targeted ablation and tissue destruction. Besides thermal ablation, histotripsy with US is designed to damage tissue purely via mechanical effect without thermal coagulation. Low-Intensity Focused Ultrasound (LIFU) has been proven to be an effective stimulation method for neuromodulation. Furthermore, US has been reported to transiently increase the permeability of biological membranes, enabling acoustic transfection and blood-brain barrier open. All of these advances in US are changing the clinic. This review mainly introduces the advances in these aspects, focusing on the physical and biological principles, challenges, and future direction.</p>\\n </div>\",\"PeriodicalId\":134,\"journal\":{\"name\":\"Biotechnology Journal\",\"volume\":\"19 12\",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-12-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biotechnology Journal\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/biot.202400561\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology Journal","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/biot.202400561","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

超声(US)可以很容易地穿透介质,具有与其波长相对应的极好的空间精度。自然,US在某些哺乳动物(如蝙蝠和海豚)的回声定位能力中起着关键作用。此外,换能器产生的医用超声通过产生热量、施加声辐射力(ARF)和声空化等方式传递超声能量与组织相互作用。基于回声定位的原理,为视障人士开发了各种辅助装置。高强度聚焦超声(HIFU)用于靶向消融和组织破坏。除热消融外,US组织切片的设计纯粹是通过机械作用而不是热凝固来破坏组织。低强度聚焦超声(LIFU)已被证明是一种有效的神经调节刺激方法。此外,据报道,US可以瞬间增加生物膜的通透性,使声转染和血脑屏障打开。美国的所有这些进步都在改变着诊所。本文主要介绍了这些方面的研究进展,重点介绍了物理和生物学原理、面临的挑战和未来的发展方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Medical Ultrasound Application Beyond Diagnosis: Insights From Ultrasound Sensing and Biological Response

Medical Ultrasound Application Beyond Diagnosis: Insights From Ultrasound Sensing and Biological Response

Ultrasound (US) can easily penetrate media with excellent spatial precision corresponding to its wavelength. Naturally, US plays a pivotal role in the echolocation abilities of certain mammals such as bats and dolphins. In addition, medical US generated by transducers interact with tissues via delivering ultrasonic energy in the modes of heat generation, exertion of acoustic radiation force (ARF), and acoustic cavitation. Based on the principle of echolocation, various assistive devices for visual impairment people have been developed. High-Intensity Focused Ultrasound (HIFU) are developed for targeted ablation and tissue destruction. Besides thermal ablation, histotripsy with US is designed to damage tissue purely via mechanical effect without thermal coagulation. Low-Intensity Focused Ultrasound (LIFU) has been proven to be an effective stimulation method for neuromodulation. Furthermore, US has been reported to transiently increase the permeability of biological membranes, enabling acoustic transfection and blood-brain barrier open. All of these advances in US are changing the clinic. This review mainly introduces the advances in these aspects, focusing on the physical and biological principles, challenges, and future direction.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biotechnology Journal
Biotechnology Journal Biochemistry, Genetics and Molecular Biology-Molecular Medicine
CiteScore
8.90
自引率
2.10%
发文量
123
审稿时长
1.5 months
期刊介绍: Biotechnology Journal (2019 Journal Citation Reports: 3.543) is fully comprehensive in its scope and publishes strictly peer-reviewed papers covering novel aspects and methods in all areas of biotechnology. Some issues are devoted to a special topic, providing the latest information on the most crucial areas of research and technological advances. In addition to these special issues, the journal welcomes unsolicited submissions for primary research articles, such as Research Articles, Rapid Communications and Biotech Methods. BTJ also welcomes proposals of Review Articles - please send in a brief outline of the article and the senior author''s CV to the editorial office. BTJ promotes a special emphasis on: Systems Biotechnology Synthetic Biology and Metabolic Engineering Nanobiotechnology and Biomaterials Tissue engineering, Regenerative Medicine and Stem cells Gene Editing, Gene therapy and Immunotherapy Omics technologies Industrial Biotechnology, Biopharmaceuticals and Biocatalysis Bioprocess engineering and Downstream processing Plant Biotechnology Biosafety, Biotech Ethics, Science Communication Methods and Advances.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信